{"title":"Advancing Treatment for Leishmaniasis: From Overcoming Challenges to Embracing Therapeutic Innovations","authors":"Vishal Kumar Singh, Rahul Tiwari, Rajneesh, Awnish Kumar, Shashi Bhushan Chauhan, Medhavi Sudarshan, Sanjana Mehrotra, Vibhav Gautam, Shyam Sundar and Rajiv Kumar*, ","doi":"10.1021/acsinfecdis.4c0069310.1021/acsinfecdis.4c00693","DOIUrl":null,"url":null,"abstract":"<p >Protozoan parasite infections, particularly leishmaniasis, present significant public health challenges in tropical and subtropical regions, affecting socio-economic status and growth. Despite advancements in immunology, effective vaccines remain vague, leaving drug treatments as the primary intervention. However, existing medications face limitations, such as toxicity and the rise of drug-resistant parasites. This presents an urgent need to identify new therapeutic targets for leishmaniasis treatment. Understanding the complex life cycle of <i>Leishmania</i> and its survival in host macrophages can provide insights into potential targets for intervention. Current treatments, including antimonials, amphotericin B, and miltefosine, are constrained by side effects, costs, resistance, and reduced efficacy. Exploring novel therapeutic targets within the parasite’s physiology, such as key metabolic enzymes or essential surface proteins, may lead to the development of more effective and less toxic drugs. Additionally, innovative strategies like drug repurposing, combination therapies, and nanotechnology-based delivery systems could enhance efficacy and combat resistance, thus improving anti-leishmanial therapies.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":"11 1","pages":"47–68 47–68"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsinfecdis.4c00693","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Protozoan parasite infections, particularly leishmaniasis, present significant public health challenges in tropical and subtropical regions, affecting socio-economic status and growth. Despite advancements in immunology, effective vaccines remain vague, leaving drug treatments as the primary intervention. However, existing medications face limitations, such as toxicity and the rise of drug-resistant parasites. This presents an urgent need to identify new therapeutic targets for leishmaniasis treatment. Understanding the complex life cycle of Leishmania and its survival in host macrophages can provide insights into potential targets for intervention. Current treatments, including antimonials, amphotericin B, and miltefosine, are constrained by side effects, costs, resistance, and reduced efficacy. Exploring novel therapeutic targets within the parasite’s physiology, such as key metabolic enzymes or essential surface proteins, may lead to the development of more effective and less toxic drugs. Additionally, innovative strategies like drug repurposing, combination therapies, and nanotechnology-based delivery systems could enhance efficacy and combat resistance, thus improving anti-leishmanial therapies.
期刊介绍:
ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to:
* Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials.
* Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets.
* Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance.
* Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents.
* Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota.
* Small molecule vaccine adjuvants for infectious disease.
* Viral and bacterial biochemistry and molecular biology.