UNET-FLIM: A Deep Learning-Based Lifetime Determination Method Facilitating Real-Time Monitoring of Rapid Lysosomal pH Variations in Living Cells

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Danying Lin, Qin Kang, Jia Li, Mengjiao Nie, Yongtu Liao, Fangrui Lin, Bin Yu, Junle Qu
{"title":"UNET-FLIM: A Deep Learning-Based Lifetime Determination Method Facilitating Real-Time Monitoring of Rapid Lysosomal pH Variations in Living Cells","authors":"Danying Lin, Qin Kang, Jia Li, Mengjiao Nie, Yongtu Liao, Fangrui Lin, Bin Yu, Junle Qu","doi":"10.1021/acs.analchem.4c05271","DOIUrl":null,"url":null,"abstract":"Lifetime determination plays a crucial role in fluorescence lifetime imaging microscopy (FLIM). We introduce UNET-FLIM, a deep learning architecture based on a one-dimensional U-net, specifically designed for lifetime determination. UNET-FLIM focuses on handling low photon count data with high background noise levels, which are commonly encountered in fast FLIM applications. The proposed network can be effectively trained using simulated decay curves, making it adaptable to various time-domain FLIM systems. Our evaluations of simulated data demonstrate that UNET-FLIM robustly estimates lifetimes and proportions, even when the signal photon count is extremely low and background noise levels are high. Remarkably, UNET-FLIM’s insensitivity to noise and minimal photon count requirements facilitate fast FLIM imaging and real-time lifetime analysis. We demonstrate its potential by applying it to monitor rapid lysosomal pH variations in living cells during in situ acetic acid treatment, all without necessitating any modifications to existing FLIM systems.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"6 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c05271","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lifetime determination plays a crucial role in fluorescence lifetime imaging microscopy (FLIM). We introduce UNET-FLIM, a deep learning architecture based on a one-dimensional U-net, specifically designed for lifetime determination. UNET-FLIM focuses on handling low photon count data with high background noise levels, which are commonly encountered in fast FLIM applications. The proposed network can be effectively trained using simulated decay curves, making it adaptable to various time-domain FLIM systems. Our evaluations of simulated data demonstrate that UNET-FLIM robustly estimates lifetimes and proportions, even when the signal photon count is extremely low and background noise levels are high. Remarkably, UNET-FLIM’s insensitivity to noise and minimal photon count requirements facilitate fast FLIM imaging and real-time lifetime analysis. We demonstrate its potential by applying it to monitor rapid lysosomal pH variations in living cells during in situ acetic acid treatment, all without necessitating any modifications to existing FLIM systems.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信