CRISPR-based epigenetic editing of Gad1 improves synaptic inhibition and cognitive behavior in a Tauopathy mouse model.

IF 5.1 2区 医学 Q1 NEUROSCIENCES
Lei Wan, Ping Zhong, Pei Li, Yong Ren, Wei Wang, Mingjun Yu, Henry Y Feng, Zhen Yan
{"title":"CRISPR-based epigenetic editing of Gad1 improves synaptic inhibition and cognitive behavior in a Tauopathy mouse model.","authors":"Lei Wan, Ping Zhong, Pei Li, Yong Ren, Wei Wang, Mingjun Yu, Henry Y Feng, Zhen Yan","doi":"10.1016/j.nbd.2025.106826","DOIUrl":null,"url":null,"abstract":"<p><p>GABAergic signaling in the brain plays a key role in regulating synaptic transmission, neuronal excitability, and cognitive processes. Large-scale sequencing has revealed the diminished expression of GABA-related genes in Alzheimer's disease (AD), however, it is largely unclear about the epigenetic mechanisms that dysregulate the transcription of these genes in AD. We confirmed that GABA synthesizing enzymes, GAD1 and GAD2, were significantly downregulated in prefrontal cortex (PFC) of AD human postmortem tissues. A tauopathy mouse model also had the significantly reduced expression of GABA-related genes, as well as the diminished GABAergic synaptic transmission in PFC pyramidal neurons. To elevate endogenous Gad1 levels, we used the CRISPR/Cas9-based epigenome editing technology to recruit histone acetyltransferase p300 to Gad1. Cells transfected with a fusion protein consisting of the nuclease-null dCas9 protein and the catalytic core of p300 (dCas9<sup>p300</sup>), as well as a guide RNA targeting Gad1 promoter (gRNA<sup>Gad1</sup>), had significantly increased Gad1 mRNA expression and histone acetylation at Gad1 promoter. Furthermore, the tauopathy mouse model with PFC injection of dCas9<sup>p300</sup> and gRNA<sup>Gad1</sup> lentiviruses had significantly elevated GABAergic synaptic currents and improved spatial memory. These results have provided an epigenetic editing-based gene-targeting strategy to restore synaptic inhibition and cognitive function in AD and related disorders.</p>","PeriodicalId":19097,"journal":{"name":"Neurobiology of Disease","volume":" ","pages":"106826"},"PeriodicalIF":5.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.nbd.2025.106826","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

GABAergic signaling in the brain plays a key role in regulating synaptic transmission, neuronal excitability, and cognitive processes. Large-scale sequencing has revealed the diminished expression of GABA-related genes in Alzheimer's disease (AD), however, it is largely unclear about the epigenetic mechanisms that dysregulate the transcription of these genes in AD. We confirmed that GABA synthesizing enzymes, GAD1 and GAD2, were significantly downregulated in prefrontal cortex (PFC) of AD human postmortem tissues. A tauopathy mouse model also had the significantly reduced expression of GABA-related genes, as well as the diminished GABAergic synaptic transmission in PFC pyramidal neurons. To elevate endogenous Gad1 levels, we used the CRISPR/Cas9-based epigenome editing technology to recruit histone acetyltransferase p300 to Gad1. Cells transfected with a fusion protein consisting of the nuclease-null dCas9 protein and the catalytic core of p300 (dCas9p300), as well as a guide RNA targeting Gad1 promoter (gRNAGad1), had significantly increased Gad1 mRNA expression and histone acetylation at Gad1 promoter. Furthermore, the tauopathy mouse model with PFC injection of dCas9p300 and gRNAGad1 lentiviruses had significantly elevated GABAergic synaptic currents and improved spatial memory. These results have provided an epigenetic editing-based gene-targeting strategy to restore synaptic inhibition and cognitive function in AD and related disorders.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurobiology of Disease
Neurobiology of Disease 医学-神经科学
CiteScore
11.20
自引率
3.30%
发文量
270
审稿时长
76 days
期刊介绍: Neurobiology of Disease is a major international journal at the interface between basic and clinical neuroscience. The journal provides a forum for the publication of top quality research papers on: molecular and cellular definitions of disease mechanisms, the neural systems and underpinning behavioral disorders, the genetics of inherited neurological and psychiatric diseases, nervous system aging, and findings relevant to the development of new therapies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信