The Neuroprotective Effects of Primary Functional Components Mulberry Leaf Extract in Diabetes-Induced Oxidative Stress and Inflammation

IF 5.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Zi-Xiang Lin, Chau-Jong Wang, Hsin-Wei Tu, Meng-Ting Tsai, Meng-Hsun Yu, Hui-Pei Huang
{"title":"The Neuroprotective Effects of Primary Functional Components Mulberry Leaf Extract in Diabetes-Induced Oxidative Stress and Inflammation","authors":"Zi-Xiang Lin, Chau-Jong Wang, Hsin-Wei Tu, Meng-Ting Tsai, Meng-Hsun Yu, Hui-Pei Huang","doi":"10.1021/acs.jafc.4c09422","DOIUrl":null,"url":null,"abstract":"Diabetes-associated neurodegeneration may result from increased oxidative stress in the brain under hyperglycemic conditions, which leads to neuronal cell death. The current study employs the neuroblastoma cell line SH-SY5Y and db/db mouse model of diabetes maintained on a high-fat diet to investigate the neuroprotective effects of the primary functional components of mulberry (Morus alba Linn) leaf extract (MLE), chlorogenic acid (CGA), and neochlorogenic acid (NCGA). CGA and NCGA demonstrated the ability to enhance the activities of the antioxidant enzymes superoxide dismutase and glutathione peroxidase, and attenuate inflammation via regulating nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear factor-κB (NFκB), and inflammatory cytokines, thereby protecting SH-SY5Y cells from oxidative damage induced by palmitic acid and high glucose. CGA and NCGA were found to decrease the expression of proinflammatory proteins α-synuclein and amyloid-β (Aβ). In addition, CGA and NCGA treatments increased the expression of tyrosine hydroxylase (TH) and brain-derived neurotrophic factor (BDNF). Furthermore, MLE supplementation in the animal model resulted in decreased levels of α-synuclein and Aβ concomitant with an elevated expression of TH. These experimental findings suggest that the neuroprotective effects of CGA and NCGA may be mediated via three pathways: reducing oxidative stress, decreasing neuronal inflammation, and enhancing BDNF expression.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"61 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c09422","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetes-associated neurodegeneration may result from increased oxidative stress in the brain under hyperglycemic conditions, which leads to neuronal cell death. The current study employs the neuroblastoma cell line SH-SY5Y and db/db mouse model of diabetes maintained on a high-fat diet to investigate the neuroprotective effects of the primary functional components of mulberry (Morus alba Linn) leaf extract (MLE), chlorogenic acid (CGA), and neochlorogenic acid (NCGA). CGA and NCGA demonstrated the ability to enhance the activities of the antioxidant enzymes superoxide dismutase and glutathione peroxidase, and attenuate inflammation via regulating nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear factor-κB (NFκB), and inflammatory cytokines, thereby protecting SH-SY5Y cells from oxidative damage induced by palmitic acid and high glucose. CGA and NCGA were found to decrease the expression of proinflammatory proteins α-synuclein and amyloid-β (Aβ). In addition, CGA and NCGA treatments increased the expression of tyrosine hydroxylase (TH) and brain-derived neurotrophic factor (BDNF). Furthermore, MLE supplementation in the animal model resulted in decreased levels of α-synuclein and Aβ concomitant with an elevated expression of TH. These experimental findings suggest that the neuroprotective effects of CGA and NCGA may be mediated via three pathways: reducing oxidative stress, decreasing neuronal inflammation, and enhancing BDNF expression.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Agricultural and Food Chemistry
Journal of Agricultural and Food Chemistry 农林科学-农业综合
CiteScore
9.90
自引率
8.20%
发文量
1375
审稿时长
2.3 months
期刊介绍: The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信