Ginkgolide B increases healthspan and lifespan of female mice

IF 17 Q1 CELL BIOLOGY
Chien-Wei Lee, Belle Yu-Hsuan Wang, Shing Hei Wong, Yi-Fan Chen, Qin Cao, Allen Wei-Ting Hsiao, Sin-Hang Fung, Yu-Fan Chen, Hao-Hsiang Wu, Po-Yu Cheng, Zong-Han Chou, Wayne Yuk-Wai Lee, Stephen Kwok Wing Tsui, Oscar Kuang-Sheng Lee
{"title":"Ginkgolide B increases healthspan and lifespan of female mice","authors":"Chien-Wei Lee, Belle Yu-Hsuan Wang, Shing Hei Wong, Yi-Fan Chen, Qin Cao, Allen Wei-Ting Hsiao, Sin-Hang Fung, Yu-Fan Chen, Hao-Hsiang Wu, Po-Yu Cheng, Zong-Han Chou, Wayne Yuk-Wai Lee, Stephen Kwok Wing Tsui, Oscar Kuang-Sheng Lee","doi":"10.1038/s43587-024-00802-0","DOIUrl":null,"url":null,"abstract":"Various anti-aging interventions show promise in extending lifespan, but many are ineffective or even harmful to healthspan. Ginkgolide B (GB), derived from Ginkgo biloba, reduces aging-related morbidities such as osteoporosis, yet its effects on healthspan and longevity have not been fully understood. In this study, we found that continuous oral administration of GB to female mice beginning at 20 months of age extended median survival and median lifespan by 30% and 8.5%, respectively. GB treatment also decreased tumor incidence; enhanced muscle quality, physical performance and metabolism; and reduced systemic inflammation and senescence. Single-nucleus RNA sequencing of skeletal muscle tissue showed that GB ameliorated aging-associated changes in cell type composition, signaling pathways and intercellular communication. GB reduced aging-induced Runx1+ type 2B myonuclei through the upregulation of miR-27b-3p, which suppresses Runx1 expression. Using functional analyses, we found that Runx1 promoted senescence and cell death in muscle cells. Collectively, these findings suggest the translational potential of GB to extend healthspan and lifespan and to promote healthy aging. Lee et al. demonstrate that Ginkgolide B treatment extends lifespan and enhances healthspan in female mice, including a reduction in tumor incidence, enhancement in muscle quality and function and suppression of systemic inflammation and senescence.","PeriodicalId":94150,"journal":{"name":"Nature aging","volume":"5 2","pages":"237-258"},"PeriodicalIF":17.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature aging","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43587-024-00802-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Various anti-aging interventions show promise in extending lifespan, but many are ineffective or even harmful to healthspan. Ginkgolide B (GB), derived from Ginkgo biloba, reduces aging-related morbidities such as osteoporosis, yet its effects on healthspan and longevity have not been fully understood. In this study, we found that continuous oral administration of GB to female mice beginning at 20 months of age extended median survival and median lifespan by 30% and 8.5%, respectively. GB treatment also decreased tumor incidence; enhanced muscle quality, physical performance and metabolism; and reduced systemic inflammation and senescence. Single-nucleus RNA sequencing of skeletal muscle tissue showed that GB ameliorated aging-associated changes in cell type composition, signaling pathways and intercellular communication. GB reduced aging-induced Runx1+ type 2B myonuclei through the upregulation of miR-27b-3p, which suppresses Runx1 expression. Using functional analyses, we found that Runx1 promoted senescence and cell death in muscle cells. Collectively, these findings suggest the translational potential of GB to extend healthspan and lifespan and to promote healthy aging. Lee et al. demonstrate that Ginkgolide B treatment extends lifespan and enhances healthspan in female mice, including a reduction in tumor incidence, enhancement in muscle quality and function and suppression of systemic inflammation and senescence.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信