Rui Hu , Wei Du , Fan Tan , Yong Wu , Chun Yang , Weiwei Wang , Wen Chen , Yanwei Miao
{"title":"Dynamic alterations in spontaneous neural activity in patients with attention-deficit/hyperactivity disorder: A resting-state fMRI study","authors":"Rui Hu , Wei Du , Fan Tan , Yong Wu , Chun Yang , Weiwei Wang , Wen Chen , Yanwei Miao","doi":"10.1016/j.brainresbull.2025.111230","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>To investigate the change of dynamic amplitude of low-frequency fluctuation (dALFF) and dynamic fractional amplitude of low-frequency fluctuation (dfALFF) in patients with attention-deficit/hyperactivity disorder (ADHD), and to explore whether dALFF/dfALFF can be used to distinguish ADHD from health controls (HCs).</div></div><div><h3>Methods</h3><div>Forty-eight cases of clinically confirmed ADHD and forty-four cases of HCs were included in the present study. It was compared to the amplitude of low-frequency fluctuations (ALFF) and fractional ALFF (fALFF), as well as the dynamic indicators dALFF and dfALFF. We investigated the relationship between clinical and dynamic indicators, and additionally performed voxel-based functional connectivity (FC) analysis. Finally, we developed an auxiliary diagnosis model.</div></div><div><h3>Results</h3><div>Brain regions with increased dALFF variability of ADHD were located in right middle frontal gyrus (MFG), left inferior parietal lobe (IPL) and superior parietal gyrus (SPG) compared with HCs. Meanwhile, increased dfALFF variability was also observed in left lingual gyrus (LING), right MFG and left middle occipital gyrus (MOG) in ADHD compared to HCs. Neuropsychological scale scores correlated with some dALFF and dfALFF indicators. Reduced FC was found between the left IPL and right cerebellum crus II in ADHD compared with HCs. With dALFF and dfALFF variability as features, we achieved a good area under the curve and an accurate classification.</div></div><div><h3>Conclusion</h3><div>This study offers new valuable insights into the cerebral dysfunction associated with ADHD from the standpoint of dynamic local brain activity. The understanding of dALFF/dfALFF variability can contribute to the comprehension of neurophysiological mechanisms and potentially aid in the diagnosis of ADHD.</div></div>","PeriodicalId":9302,"journal":{"name":"Brain Research Bulletin","volume":"222 ","pages":"Article 111230"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research Bulletin","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0361923025000425","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background
To investigate the change of dynamic amplitude of low-frequency fluctuation (dALFF) and dynamic fractional amplitude of low-frequency fluctuation (dfALFF) in patients with attention-deficit/hyperactivity disorder (ADHD), and to explore whether dALFF/dfALFF can be used to distinguish ADHD from health controls (HCs).
Methods
Forty-eight cases of clinically confirmed ADHD and forty-four cases of HCs were included in the present study. It was compared to the amplitude of low-frequency fluctuations (ALFF) and fractional ALFF (fALFF), as well as the dynamic indicators dALFF and dfALFF. We investigated the relationship between clinical and dynamic indicators, and additionally performed voxel-based functional connectivity (FC) analysis. Finally, we developed an auxiliary diagnosis model.
Results
Brain regions with increased dALFF variability of ADHD were located in right middle frontal gyrus (MFG), left inferior parietal lobe (IPL) and superior parietal gyrus (SPG) compared with HCs. Meanwhile, increased dfALFF variability was also observed in left lingual gyrus (LING), right MFG and left middle occipital gyrus (MOG) in ADHD compared to HCs. Neuropsychological scale scores correlated with some dALFF and dfALFF indicators. Reduced FC was found between the left IPL and right cerebellum crus II in ADHD compared with HCs. With dALFF and dfALFF variability as features, we achieved a good area under the curve and an accurate classification.
Conclusion
This study offers new valuable insights into the cerebral dysfunction associated with ADHD from the standpoint of dynamic local brain activity. The understanding of dALFF/dfALFF variability can contribute to the comprehension of neurophysiological mechanisms and potentially aid in the diagnosis of ADHD.
期刊介绍:
The Brain Research Bulletin (BRB) aims to publish novel work that advances our knowledge of molecular and cellular mechanisms that underlie neural network properties associated with behavior, cognition and other brain functions during neurodevelopment and in the adult. Although clinical research is out of the Journal''s scope, the BRB also aims to publish translation research that provides insight into biological mechanisms and processes associated with neurodegeneration mechanisms, neurological diseases and neuropsychiatric disorders. The Journal is especially interested in research using novel methodologies, such as optogenetics, multielectrode array recordings and life imaging in wild-type and genetically-modified animal models, with the goal to advance our understanding of how neurons, glia and networks function in vivo.