Lu Wang, Henry R Kranzler, Joel Gelernter, Hang Zhou
{"title":"Investigating the Contribution of Coding Variants in Alcohol Use Disorder Using Whole-Exome Sequencing Across Ancestries.","authors":"Lu Wang, Henry R Kranzler, Joel Gelernter, Hang Zhou","doi":"10.1016/j.biopsych.2025.01.020","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Alcohol use disorder (AUD) is a leading cause of death and disability worldwide. There has been substantial progress in identifying genetic variants that underlie AUD. However, whole-exome sequencing studies of AUD have been hampered by the lack of available samples.</p><p><strong>Methods: </strong>We analyzed whole-exome sequencing data of 4530 samples from the Yale-Penn cohort and 469,835 samples from the UK Biobank, which represent an unprecedented resource for exploring the contribution of coding variants in AUD. After quality control, 1750 African-ancestry (1142 cases) and 2039 European-ancestry (1420 cases) samples from the Yale-Penn and 6142 African-ancestry (130 cases), 415,617 European-ancestry (12,861 cases), and 4607 South Asian (130 cases) samples from the UK Biobank cohorts were included in the analyses.</p><p><strong>Results: </strong>We confirmed the well-known functional variant rs1229984 in ADH1B (p = 4.88 × 10<sup>-31</sup>) and several other variants in ADH1C. Gene-based collapsing tests that considered the high allelic heterogeneity revealed the previously unreported genes CNST (p = 1.19 × 10<sup>-6</sup>), attributable to rare variants with allele frequency < 0.001, and IFIT5 (p = 3.74 × 10<sup>-6</sup>), driven by the burden of both common and rare loss-of-function and missense variants.</p><p><strong>Conclusions: </strong>This study extends our understanding of the genetic architecture of AUD by providing insights into the contribution of rare coding variants, separately and convergently with common variants in AUD.</p>","PeriodicalId":8918,"journal":{"name":"Biological Psychiatry","volume":" ","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.biopsych.2025.01.020","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Alcohol use disorder (AUD) is a leading cause of death and disability worldwide. There has been substantial progress in identifying genetic variants that underlie AUD. However, whole-exome sequencing studies of AUD have been hampered by the lack of available samples.
Methods: We analyzed whole-exome sequencing data of 4530 samples from the Yale-Penn cohort and 469,835 samples from the UK Biobank, which represent an unprecedented resource for exploring the contribution of coding variants in AUD. After quality control, 1750 African-ancestry (1142 cases) and 2039 European-ancestry (1420 cases) samples from the Yale-Penn and 6142 African-ancestry (130 cases), 415,617 European-ancestry (12,861 cases), and 4607 South Asian (130 cases) samples from the UK Biobank cohorts were included in the analyses.
Results: We confirmed the well-known functional variant rs1229984 in ADH1B (p = 4.88 × 10-31) and several other variants in ADH1C. Gene-based collapsing tests that considered the high allelic heterogeneity revealed the previously unreported genes CNST (p = 1.19 × 10-6), attributable to rare variants with allele frequency < 0.001, and IFIT5 (p = 3.74 × 10-6), driven by the burden of both common and rare loss-of-function and missense variants.
Conclusions: This study extends our understanding of the genetic architecture of AUD by providing insights into the contribution of rare coding variants, separately and convergently with common variants in AUD.
期刊介绍:
Biological Psychiatry is an official journal of the Society of Biological Psychiatry and was established in 1969. It is the first journal in the Biological Psychiatry family, which also includes Biological Psychiatry: Cognitive Neuroscience and Neuroimaging and Biological Psychiatry: Global Open Science. The Society's main goal is to promote excellence in scientific research and education in the fields related to the nature, causes, mechanisms, and treatments of disorders pertaining to thought, emotion, and behavior. To fulfill this mission, Biological Psychiatry publishes peer-reviewed, rapid-publication articles that present new findings from original basic, translational, and clinical mechanistic research, ultimately advancing our understanding of psychiatric disorders and their treatment. The journal also encourages the submission of reviews and commentaries on current research and topics of interest.