End-To-End Deep Learning Explains Antimicrobial Resistance in Peak-Picking-Free MALDI-MS Data.

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Johan K Lassen, Palle Villesen
{"title":"End-To-End Deep Learning Explains Antimicrobial Resistance in Peak-Picking-Free MALDI-MS Data.","authors":"Johan K Lassen, Palle Villesen","doi":"10.1021/acs.analchem.4c05113","DOIUrl":null,"url":null,"abstract":"<p><p>Mass spectrometry is used to determine infectious microbial species in thousands of clinical laboratories across the world. The vast amount of data allows modern data analysis methods that harvest more information and potentially answer new questions. Here, we present an end-to-end deep learning model for predicting antibiotic resistance using raw matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) data. We used a 1-dimensional convolutional neural network to model (almost) raw data, skipping conventional peak-picking and directly predict resistance. The model's performance is state-of-the-art, having AUCs between 0.93 and 0.99 in all antimicrobial resistance phenotypes and validates across time and location. Feature attribution values highlight important insights into the model and how the end-to-end workflow can be improved further. This study showcases that reliable resistance phenotyping using MALDI-MS data is attainable and highlights the gains of using end-to-end deep learning for spectrometry data.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":" ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c05113","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Mass spectrometry is used to determine infectious microbial species in thousands of clinical laboratories across the world. The vast amount of data allows modern data analysis methods that harvest more information and potentially answer new questions. Here, we present an end-to-end deep learning model for predicting antibiotic resistance using raw matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) data. We used a 1-dimensional convolutional neural network to model (almost) raw data, skipping conventional peak-picking and directly predict resistance. The model's performance is state-of-the-art, having AUCs between 0.93 and 0.99 in all antimicrobial resistance phenotypes and validates across time and location. Feature attribution values highlight important insights into the model and how the end-to-end workflow can be improved further. This study showcases that reliable resistance phenotyping using MALDI-MS data is attainable and highlights the gains of using end-to-end deep learning for spectrometry data.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信