Identifying bee species origins of Philippine honey using X-ray fluorescence elemental analysis coupled with machine learning

IF 9.8 1区 农林科学 Q1 CHEMISTRY, APPLIED
Angel T. Bautista VII , June Hope D. Aznar , Remjohn Aron H. Magtaas , Mary Margareth T. Bauyon , Andrei Joshua R. Yu , Joshua Kian G. Balaguer , Jervee M. Punzalan , Jessica B. Baroga-Barbecho , Cleofas R. Cervancia
{"title":"Identifying bee species origins of Philippine honey using X-ray fluorescence elemental analysis coupled with machine learning","authors":"Angel T. Bautista VII ,&nbsp;June Hope D. Aznar ,&nbsp;Remjohn Aron H. Magtaas ,&nbsp;Mary Margareth T. Bauyon ,&nbsp;Andrei Joshua R. Yu ,&nbsp;Joshua Kian G. Balaguer ,&nbsp;Jervee M. Punzalan ,&nbsp;Jessica B. Baroga-Barbecho ,&nbsp;Cleofas R. Cervancia","doi":"10.1016/j.foodchem.2025.143165","DOIUrl":null,"url":null,"abstract":"<div><div>Stingless bee honey is emerging as a superfood, given its enhanced health and therapeutic benefits. In this paper, we used handheld X-ray fluorescence spectroscopy (hXRF) with machine learning techniques to classify Philippine honey based on its entomological origin. Honey samples from three different bee species were analyzed, specifically European honeybee (<em>Apis mellifera</em>), Philippine giant honeybees (<em>Apis breviligula</em> and <em>Apis dorsata</em>), and Philippine stingless bee (<em>Tetragonula biroi</em>). Random forest and logistic regression models were used on the hXRF dataset for entomological origin classification. The optimized random forest model classified entomological origin with 85.2 % (225 out of 264) overall accuracy. The logistic regression model confirmed the entomological origin of Philippine stingless bees with 94.1 % accuracy and 100.0 % specificity. As such, honey that passes this model's test is undoubtedly made by Philippine stingless bees, making it an excellent screening tool for authenticating Philippine stingless bee honey.</div></div>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"474 ","pages":"Article 143165"},"PeriodicalIF":9.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814625004157","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Stingless bee honey is emerging as a superfood, given its enhanced health and therapeutic benefits. In this paper, we used handheld X-ray fluorescence spectroscopy (hXRF) with machine learning techniques to classify Philippine honey based on its entomological origin. Honey samples from three different bee species were analyzed, specifically European honeybee (Apis mellifera), Philippine giant honeybees (Apis breviligula and Apis dorsata), and Philippine stingless bee (Tetragonula biroi). Random forest and logistic regression models were used on the hXRF dataset for entomological origin classification. The optimized random forest model classified entomological origin with 85.2 % (225 out of 264) overall accuracy. The logistic regression model confirmed the entomological origin of Philippine stingless bees with 94.1 % accuracy and 100.0 % specificity. As such, honey that passes this model's test is undoubtedly made by Philippine stingless bees, making it an excellent screening tool for authenticating Philippine stingless bee honey.
利用x射线荧光元素分析结合机器学习识别菲律宾蜂蜜的蜜蜂种类来源
无刺蜜蜂蜂蜜正成为一种超级食品,因为它具有增强健康和治疗的好处。在本文中,我们使用手持式x射线荧光光谱(hXRF)与机器学习技术根据其昆虫学来源对菲律宾蜂蜜进行分类。对欧洲蜜蜂(A. mellifera)、菲律宾巨型蜜蜂(A. breviligula和A. dorsata)和菲律宾无刺蜜蜂(T. biroi)三种蜜蜂的蜂蜜样本进行了分析。采用随机森林模型和逻辑回归模型对hXRF数据集进行昆虫来源分类。优化后的随机森林模型对昆虫起源的分类总体准确率为85.2% %(225 / 264)。logistic回归模型证实了菲律宾无刺蜂的昆虫学起源,准确率为94.1 %,特异性为100.0 %。因此,通过该模型测试的蜂蜜无疑是由菲律宾无刺蜂制作的,使其成为鉴定菲律宾无刺蜂蜂蜜的绝佳筛选工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Chemistry
Food Chemistry 工程技术-食品科技
CiteScore
16.30
自引率
10.20%
发文量
3130
审稿时长
122 days
期刊介绍: Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信