{"title":"Non-Newtonian lacuno-canalicular fluid flow in bone altered by mechanical loading and magnetic field.","authors":"Rakesh Kumar, Suja Laxmikant Vajire, Abhishek Kumar Tiwari, Dharmendra Tripathi","doi":"10.1080/10255842.2025.2453924","DOIUrl":null,"url":null,"abstract":"<p><p>As humans age, they experience deformity and a decrease in their bone strength, such brittleness in the bones ultimately lead to bone fracture. Magnetic field exposure combined with physical exercise may be useful in mitigating age-related bone loss by improving the canalicular fluid motion within the bone's lacuno-canalicular system (LCS). Nevertheless, an adequate amount of fluid induced shear stress is necessary for the bone mechano-transduction and solute transport in the case of brittle bone diseases. The underlying mechanisms of how magnetic fields, in combination to mechanical loading, affects the canalicular fluid motion still need to be explored. Accordingly, this study aims to develop a computer model to investigate the role of magnetic fields on loading-induced canalicular fluid flow in a curvy lacunar canalicular space with irregular osteocyte cell processes and walls. Moreover, this study considers canalicular fluid as non-Newtonian fluid, i.e., Jeffery fluid. In addition, a machine learning model was further employed for the estimation of parameters which significantly influence the canalicular fluid flow in response to loading and magnetic field. The results show that static magnetic field modulates the loading-induced canalicular fluid flow. Additionally, present study accelerates the fluid induced wall shear stress in case of osteoporosis.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-19"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2025.2453924","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
As humans age, they experience deformity and a decrease in their bone strength, such brittleness in the bones ultimately lead to bone fracture. Magnetic field exposure combined with physical exercise may be useful in mitigating age-related bone loss by improving the canalicular fluid motion within the bone's lacuno-canalicular system (LCS). Nevertheless, an adequate amount of fluid induced shear stress is necessary for the bone mechano-transduction and solute transport in the case of brittle bone diseases. The underlying mechanisms of how magnetic fields, in combination to mechanical loading, affects the canalicular fluid motion still need to be explored. Accordingly, this study aims to develop a computer model to investigate the role of magnetic fields on loading-induced canalicular fluid flow in a curvy lacunar canalicular space with irregular osteocyte cell processes and walls. Moreover, this study considers canalicular fluid as non-Newtonian fluid, i.e., Jeffery fluid. In addition, a machine learning model was further employed for the estimation of parameters which significantly influence the canalicular fluid flow in response to loading and magnetic field. The results show that static magnetic field modulates the loading-induced canalicular fluid flow. Additionally, present study accelerates the fluid induced wall shear stress in case of osteoporosis.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.