Exploring the Fluorescence Bioactive Compounds in the Coelomic Fluid of Earthworms: Insights into Their Structural, Spectroscopic, and Functional Properties for Biomedical Applications.

IF 1.6 4区 农林科学 Q3 CHEMISTRY, APPLIED
Saravanakumar Venkatachalam, Johnson Retnaraj Samuel Selvan Christyraj, Jackson Durairaj Selvan Christyraj, Ravichandran Subramaniam, Melinda Grace Rossan Mathews, Jenif Leo Anandharaj, Kesavamoorthy Venkatachalam, Kalishwaralal Kalimuthu, Beryl Vedha Yesudhason
{"title":"Exploring the Fluorescence Bioactive Compounds in the Coelomic Fluid of Earthworms: Insights into Their Structural, Spectroscopic, and Functional Properties for Biomedical Applications.","authors":"Saravanakumar Venkatachalam, Johnson Retnaraj Samuel Selvan Christyraj, Jackson Durairaj Selvan Christyraj, Ravichandran Subramaniam, Melinda Grace Rossan Mathews, Jenif Leo Anandharaj, Kesavamoorthy Venkatachalam, Kalishwaralal Kalimuthu, Beryl Vedha Yesudhason","doi":"10.5650/jos.ess24168","DOIUrl":null,"url":null,"abstract":"<p><p>Coelomic fluid of earthworms is a valuable source of novel bioactive compounds with therapeutic applications. To gain insight into the bioactive compounds in the coelomic fluid, this study used Perionyx excavatus, a tropical earthworm distinguished for its remarkable ability for regeneration. This study aimed to identify fluorescent bioactive compounds in the coelomic fluid of P. excavatus and to investigate these compounds structural and functional characteristics for potential use in biomedical applications. Fluorescent bioactive compounds present in the coelomic fluid are identified using Thin Layer Chromatography (TLC), UV-visible spectrophotometry, and Spectrofluorometry techniques. Two unknown groups of fluorophore, named CFA and CFB, were analyzed by studying their emission spectra. In addition, GC-MS and LC-MS analyses provides detailed list of bioactive compound present in the coelomic fluid, in which indole and arachidonic acid shown maximum excitation and thus chosen for further studies. Their functional characterization reveals antibacterial activity, cytotoxicity and in-vitro wound healing assays, respectively. Notably, both of them exhibit significant efficacy against Aeromonas hydrophila, Salmonella typhi and Staphylococcus aureus. However, indole shows poor activity against Pseudomonas aeruginosa, whereas arachidonic acid demonstrates effective activity. These findings imply that these bioactive fluorescent compounds may have significant therapeutic applications.</p>","PeriodicalId":16626,"journal":{"name":"Journal of oleo science","volume":"74 2","pages":"203-220"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of oleo science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5650/jos.ess24168","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Coelomic fluid of earthworms is a valuable source of novel bioactive compounds with therapeutic applications. To gain insight into the bioactive compounds in the coelomic fluid, this study used Perionyx excavatus, a tropical earthworm distinguished for its remarkable ability for regeneration. This study aimed to identify fluorescent bioactive compounds in the coelomic fluid of P. excavatus and to investigate these compounds structural and functional characteristics for potential use in biomedical applications. Fluorescent bioactive compounds present in the coelomic fluid are identified using Thin Layer Chromatography (TLC), UV-visible spectrophotometry, and Spectrofluorometry techniques. Two unknown groups of fluorophore, named CFA and CFB, were analyzed by studying their emission spectra. In addition, GC-MS and LC-MS analyses provides detailed list of bioactive compound present in the coelomic fluid, in which indole and arachidonic acid shown maximum excitation and thus chosen for further studies. Their functional characterization reveals antibacterial activity, cytotoxicity and in-vitro wound healing assays, respectively. Notably, both of them exhibit significant efficacy against Aeromonas hydrophila, Salmonella typhi and Staphylococcus aureus. However, indole shows poor activity against Pseudomonas aeruginosa, whereas arachidonic acid demonstrates effective activity. These findings imply that these bioactive fluorescent compounds may have significant therapeutic applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of oleo science
Journal of oleo science CHEMISTRY, APPLIED-FOOD SCIENCE & TECHNOLOGY
CiteScore
3.20
自引率
6.70%
发文量
173
审稿时长
3 months
期刊介绍: The J. Oleo Sci. publishes original researches of high quality on chemistry, biochemistry and science of fats and oils such as related food products, detergents, natural products, petroleum products, lipids and related proteins and sugars. The Journal also encourages papers on chemistry and/or biochemistry as a major component combined with biological/ sensory/nutritional/toxicological evaluation related to agriculture and/or food.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信