Microbiological hazards associated with the use of water in the post-harvest handling and processing operations of fresh and frozen fruits, vegetables and herbs (ffFVH). Part 4 (fresh-cut FVH process water management plan)

IF 3.3 3区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY
EFSA Panel on Biological Hazards (BIOHAZ), Ana Allende, Avelino Alvarez-Ordóñez, Valeria Bortolaia, Sara Bover-Cid, Alessandra De Cesare, Wietske Dohmen, Laurent Guillier, Lieve Herman, Liesbeth Jacxsens, Lapo Mughini-Gras, Maarten Nauta, Jakob Ottoson, Luisa Peixe, Fernando Perez-Rodriguez, Panagiotis Skandamis, Elisabetta Suffredini, Jen Banach, Bin Zhou, Maria Teresa da Silva Felício, Laura Martino, Winy Messens, Angela Botteon
{"title":"Microbiological hazards associated with the use of water in the post-harvest handling and processing operations of fresh and frozen fruits, vegetables and herbs (ffFVH). Part 4 (fresh-cut FVH process water management plan)","authors":"EFSA Panel on Biological Hazards (BIOHAZ),&nbsp;Ana Allende,&nbsp;Avelino Alvarez-Ordóñez,&nbsp;Valeria Bortolaia,&nbsp;Sara Bover-Cid,&nbsp;Alessandra De Cesare,&nbsp;Wietske Dohmen,&nbsp;Laurent Guillier,&nbsp;Lieve Herman,&nbsp;Liesbeth Jacxsens,&nbsp;Lapo Mughini-Gras,&nbsp;Maarten Nauta,&nbsp;Jakob Ottoson,&nbsp;Luisa Peixe,&nbsp;Fernando Perez-Rodriguez,&nbsp;Panagiotis Skandamis,&nbsp;Elisabetta Suffredini,&nbsp;Jen Banach,&nbsp;Bin Zhou,&nbsp;Maria Teresa da Silva Felício,&nbsp;Laura Martino,&nbsp;Winy Messens,&nbsp;Angela Botteon","doi":"10.2903/j.efsa.2025.9171","DOIUrl":null,"url":null,"abstract":"<p>Water used in post-harvest handling and processing operations is an important risk factor for microbiological cross-contamination of fruits, vegetables and herbs (FVH). Industrial data indicated that the fresh-cut FVH sector is characterised by process water at cooled temperature, operational cycles between 1 and 15 h, and product volumes between 700 and 3000 kg. Intervention strategies were based on water disinfection treatments mostly using chlorine-based disinfectants. Water replenishment was not observed within studied industries. The industrial data, which included 19 scenarios were used to develop a guidance for a water management plan (WMP) for the fresh-cut FVH sector. A WMP aims to maintain the fit-for-purpose microbiological quality of the process water and consists of: (a) identification of microbial hazards and hazardous events linked to process water; (b) establishment of the relationship between microbiological and physico-chemical parameters; (c) description of preventive measures; (d) description of intervention measures, including their validation, operational monitoring and verification; and (e) record keeping and trend analysis. A predictive model was used to simulate water management outcomes, highlighting the need for water disinfection treatments to maintain the microbiological quality of the process water and the added value of water replenishment. Relying solely on water replenishment (at realistic feasible rates) does not avoid microbial accumulation in the water. Operational monitoring of the physico-chemical parameters ensures that the disinfection systems are operating effectively. Verification includes microbiological analysis of the process water linked to the operational monitoring outcomes of physico-chemical parameters. Although <i>Escherichia coli</i> and <i>Listeria</i> spp. could be indicators for assessing water quality, food business operators should set up and validate a tailored WMP to identify physico-chemical parameters, as well as microbial indicators and their threshold levels, as performance standards for maintaining the fit-for-purpose microbiological quality of the process water during post-harvest handling and processing operations.</p>","PeriodicalId":11657,"journal":{"name":"EFSA Journal","volume":"23 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11780610/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EFSA Journal","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2025.9171","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Water used in post-harvest handling and processing operations is an important risk factor for microbiological cross-contamination of fruits, vegetables and herbs (FVH). Industrial data indicated that the fresh-cut FVH sector is characterised by process water at cooled temperature, operational cycles between 1 and 15 h, and product volumes between 700 and 3000 kg. Intervention strategies were based on water disinfection treatments mostly using chlorine-based disinfectants. Water replenishment was not observed within studied industries. The industrial data, which included 19 scenarios were used to develop a guidance for a water management plan (WMP) for the fresh-cut FVH sector. A WMP aims to maintain the fit-for-purpose microbiological quality of the process water and consists of: (a) identification of microbial hazards and hazardous events linked to process water; (b) establishment of the relationship between microbiological and physico-chemical parameters; (c) description of preventive measures; (d) description of intervention measures, including their validation, operational monitoring and verification; and (e) record keeping and trend analysis. A predictive model was used to simulate water management outcomes, highlighting the need for water disinfection treatments to maintain the microbiological quality of the process water and the added value of water replenishment. Relying solely on water replenishment (at realistic feasible rates) does not avoid microbial accumulation in the water. Operational monitoring of the physico-chemical parameters ensures that the disinfection systems are operating effectively. Verification includes microbiological analysis of the process water linked to the operational monitoring outcomes of physico-chemical parameters. Although Escherichia coli and Listeria spp. could be indicators for assessing water quality, food business operators should set up and validate a tailored WMP to identify physico-chemical parameters, as well as microbial indicators and their threshold levels, as performance standards for maintaining the fit-for-purpose microbiological quality of the process water during post-harvest handling and processing operations.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
EFSA Journal
EFSA Journal Veterinary-Veterinary (miscellaneous)
CiteScore
5.20
自引率
21.20%
发文量
422
审稿时长
5 weeks
期刊介绍: The EFSA Journal covers methods of risk assessment, reports on data collected, and risk assessments in the individual areas of plant health, plant protection products and their residues, genetically modified organisms, additives and products or substances used in animal feed, animal health and welfare, biological hazards including BSE/TSE, contaminants in the food chain, food contact materials, enzymes, flavourings and processing aids, food additives and nutrient sources added to food, dietetic products, nutrition and allergies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信