Luteolin Mitigates Acute Lung Injury Through Immune Modulation and Antinecroptosis Effects by Targeting the BTK and FLT3 Signaling Pathways.

IF 5.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Journal of Agricultural and Food Chemistry Pub Date : 2025-03-05 Epub Date: 2025-01-30 DOI:10.1021/acs.jafc.4c06704
Zhixing Cao, Huanan Rao, Wenya Yang, Xiaoxue Hu, Xin Kang, Daoyin Gong, Xiaominting Song, Yali Ren, Cheng Peng, Yuzhi Li, Jin Pei
{"title":"Luteolin Mitigates Acute Lung Injury Through Immune Modulation and Antinecroptosis Effects by Targeting the BTK and FLT3 Signaling Pathways.","authors":"Zhixing Cao, Huanan Rao, Wenya Yang, Xiaoxue Hu, Xin Kang, Daoyin Gong, Xiaominting Song, Yali Ren, Cheng Peng, Yuzhi Li, Jin Pei","doi":"10.1021/acs.jafc.4c06704","DOIUrl":null,"url":null,"abstract":"<p><p>Overactive immune responses and lung cell damage exacerbate acute lung injury (ALI). Luteolin, a flavonoid commonly found in traditional herbs, shows potential as an anti-ALI agent in pharmacological and clinical research, although its biological mechanism is not fully understood. This study aims to investigate whether luteolin can ameliorate ALI through its immune-modulatory and antinecroptosis mechanisms. We found that luteolin significantly inhibits the cellular activity of the FLT3-dependent monocyte cell line MOLM-13 and BTK-dependent B-cell line TMD-8. Through molecular docking and HTRF detection, it was confirmed that luteolin inhibits BTK and FLT3 enzyme activity by binding to their kinase domains, with IC<sub>50</sub> values of 0.78 and 0.35 μM, respectively. In a TNF-α-induced lung epithelial cell injury model, luteolin reduced the increased expression of <i>IL1B</i>, <i>IL6</i>, and <i>CXCL8</i> mRNAs by blocking the necroptosis signal TNF-α/BTK/MLKL. Furthermore, using a Balb/c mouse ALI model with intratracheal LPS infusion (5 mg/kg), it was observed that luteolin improved lung function and pathology, regulated immune cell infiltration, and reduced cell death in pulmonary tissues by inhibiting BTK and FLT3 protein phosphorylation. In conclusion, luteolin acts as a natural BTK and FLT3 inhibitor, effectively preventing ALI both <i>in vivo</i> and <i>in vitro</i> through its immune-modulating and antinecroptosis properties.</p>","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":" ","pages":"5180-5193"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c06704","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Overactive immune responses and lung cell damage exacerbate acute lung injury (ALI). Luteolin, a flavonoid commonly found in traditional herbs, shows potential as an anti-ALI agent in pharmacological and clinical research, although its biological mechanism is not fully understood. This study aims to investigate whether luteolin can ameliorate ALI through its immune-modulatory and antinecroptosis mechanisms. We found that luteolin significantly inhibits the cellular activity of the FLT3-dependent monocyte cell line MOLM-13 and BTK-dependent B-cell line TMD-8. Through molecular docking and HTRF detection, it was confirmed that luteolin inhibits BTK and FLT3 enzyme activity by binding to their kinase domains, with IC50 values of 0.78 and 0.35 μM, respectively. In a TNF-α-induced lung epithelial cell injury model, luteolin reduced the increased expression of IL1B, IL6, and CXCL8 mRNAs by blocking the necroptosis signal TNF-α/BTK/MLKL. Furthermore, using a Balb/c mouse ALI model with intratracheal LPS infusion (5 mg/kg), it was observed that luteolin improved lung function and pathology, regulated immune cell infiltration, and reduced cell death in pulmonary tissues by inhibiting BTK and FLT3 protein phosphorylation. In conclusion, luteolin acts as a natural BTK and FLT3 inhibitor, effectively preventing ALI both in vivo and in vitro through its immune-modulating and antinecroptosis properties.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Agricultural and Food Chemistry
Journal of Agricultural and Food Chemistry 农林科学-农业综合
CiteScore
9.90
自引率
8.20%
发文量
1375
审稿时长
2.3 months
期刊介绍: The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信