Damien Olivier-Jimenez, Rico J E Derks, Oscar Harari, Carlos Cruchaga, Muhammad Ali, Alessandro Ori, Domenico Di Fraia, Birol Cabukusta, Andy Henrie, Martin Giera, Yassene Mohammed
{"title":"iSODA: A Comprehensive Tool for Integrative Omics Data Analysis in Single- and Multi-Omics Experiments.","authors":"Damien Olivier-Jimenez, Rico J E Derks, Oscar Harari, Carlos Cruchaga, Muhammad Ali, Alessandro Ori, Domenico Di Fraia, Birol Cabukusta, Andy Henrie, Martin Giera, Yassene Mohammed","doi":"10.1021/acs.analchem.4c04355","DOIUrl":null,"url":null,"abstract":"<p><p>Thanks to the plummeting costs of continuously evolving omics analytical platforms, research centers collect multiomics data more routinely. They are, however, confronted with the lack of a versatile software solution to harmoniously analyze single-omics and interpret multiomics data. We have developed iSODA, a web-based application for the analysis of single- and multiomics data. The tool emphasizes intuitive interactive visualizations designed for user-driven data exploration. Researchers can access a variety of functions ranging from simple visualization like volcano plots and PCA to advanced functional analyses like enrichment analysis and lipid saturation analysis. For integrated multiomics, iSODA incorporates multi-omics factor analysis and similarity network fusion. The ability to adapt the data on-the-fly allows for tasks, such as the removal of outlier samples or failed features, imputation, or normalization. All results are presented through interactive plots, the modular design supports extensions, and tooltips and tutorials provide comprehensive guidance for users. iSODA is accessible under http://isoda.online/.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":" ","pages":"2689-2697"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11822744/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c04355","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Thanks to the plummeting costs of continuously evolving omics analytical platforms, research centers collect multiomics data more routinely. They are, however, confronted with the lack of a versatile software solution to harmoniously analyze single-omics and interpret multiomics data. We have developed iSODA, a web-based application for the analysis of single- and multiomics data. The tool emphasizes intuitive interactive visualizations designed for user-driven data exploration. Researchers can access a variety of functions ranging from simple visualization like volcano plots and PCA to advanced functional analyses like enrichment analysis and lipid saturation analysis. For integrated multiomics, iSODA incorporates multi-omics factor analysis and similarity network fusion. The ability to adapt the data on-the-fly allows for tasks, such as the removal of outlier samples or failed features, imputation, or normalization. All results are presented through interactive plots, the modular design supports extensions, and tooltips and tutorials provide comprehensive guidance for users. iSODA is accessible under http://isoda.online/.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.