Development of a Single-Molecule Biosensor Based on Polymerization-Transcription-Mediated Target Regeneration for Simultaneously One-Pot Detection of Multiple piRNAs

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Dong-Ming Yang, Dongling Li, Qian Zhang, Shulin Zhao, Chun-Yang Zhang
{"title":"Development of a Single-Molecule Biosensor Based on Polymerization-Transcription-Mediated Target Regeneration for Simultaneously One-Pot Detection of Multiple piRNAs","authors":"Dong-Ming Yang, Dongling Li, Qian Zhang, Shulin Zhao, Chun-Yang Zhang","doi":"10.1021/acs.analchem.4c06491","DOIUrl":null,"url":null,"abstract":"PIWI-interacting RNAs (piRNAs) are a class of small noncoding RNAs associated with PIWI proteins within the male germline, and they play significant roles in maintaining genome stability via the modulation of gene expression. The piRNAs are implicated in the progression of various cancers, but the simultaneous monitoring of multiple piRNAs remains a challenge. Herein, we construct a single-molecule biosensor based on polymerization-transcription-mediated target regeneration for the simultaneous one-pot detection of multiple piRNAs. This assay involves two cycles. In step 1, target piRNAs hybridize with the template probe complexes to yield three-way junction (3WJ) structures. Then, KF DNA polymerase initiates the extension to generate a complete T7 promoter, and the extension product can act as an invading strand to displace signal probes, resulting in the release of fluorophores. Then, in step 2, the T7 promoter can be recognized by T7 RNA polymerase to initiate transcription, producing abundant transcripts with 3′–OH that are identical to piRNAs. The resultant transcripts can hybridize with free template probe complexes to obtain new 3WJ structures that can be elongated by KF polymerase for the recovery of fluorescence signals. This assay can be performed homogeneously in a one-pot format within 30 min, and it exhibits high sensitivity, with a limit of detection (LOD) of 19.26 aM for piRNA-36026 and 41.88 aM for piRNA-36743. Moreover, it can simultaneously detect endogenous piRNAs at the single-cell level and differentiate piRNA expression in the tissues of healthy individuals and breast cancer patients, offering a prospective platform for clinic diagnosis.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"17 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c06491","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

PIWI-interacting RNAs (piRNAs) are a class of small noncoding RNAs associated with PIWI proteins within the male germline, and they play significant roles in maintaining genome stability via the modulation of gene expression. The piRNAs are implicated in the progression of various cancers, but the simultaneous monitoring of multiple piRNAs remains a challenge. Herein, we construct a single-molecule biosensor based on polymerization-transcription-mediated target regeneration for the simultaneous one-pot detection of multiple piRNAs. This assay involves two cycles. In step 1, target piRNAs hybridize with the template probe complexes to yield three-way junction (3WJ) structures. Then, KF DNA polymerase initiates the extension to generate a complete T7 promoter, and the extension product can act as an invading strand to displace signal probes, resulting in the release of fluorophores. Then, in step 2, the T7 promoter can be recognized by T7 RNA polymerase to initiate transcription, producing abundant transcripts with 3′–OH that are identical to piRNAs. The resultant transcripts can hybridize with free template probe complexes to obtain new 3WJ structures that can be elongated by KF polymerase for the recovery of fluorescence signals. This assay can be performed homogeneously in a one-pot format within 30 min, and it exhibits high sensitivity, with a limit of detection (LOD) of 19.26 aM for piRNA-36026 and 41.88 aM for piRNA-36743. Moreover, it can simultaneously detect endogenous piRNAs at the single-cell level and differentiate piRNA expression in the tissues of healthy individuals and breast cancer patients, offering a prospective platform for clinic diagnosis.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信