Multiplex Nontargeted Framework Enables Tracking Metabolic Profile of Oxymetholone and Methasterone In Vivo at Nanogram Level by GC-Orbitrap-HRMS for Antidoping Purpose
{"title":"Multiplex Nontargeted Framework Enables Tracking Metabolic Profile of Oxymetholone and Methasterone In Vivo at Nanogram Level by GC-Orbitrap-HRMS for Antidoping Purpose","authors":"Siying Zheng, Yuqi Ge, Xian Fang, Mengpan Liu, Haoyi Sun, Xiaojun Deng, Lei Liao","doi":"10.1021/acs.analchem.4c06026","DOIUrl":null,"url":null,"abstract":"Oxymetholone and methasterone are anabolic androgenic steroids prohibited by the World Anti-Doping Agency (WADA) for both in-competition and out-of-competition use. Detecting metabolites of exogenous steroids is crucial for establishing doping violations, making the study of these metabolites essential in antidoping efforts. This study investigated the urinary metabolic profiles of oxymetholone and methasterone using gas chromatography-orbitrap high-resolution mass spectrometry (GC-Orbitrap-HRMS) in nanogram level by utilizing a novel multiplex nontargeted framework protocol. Healthy volunteers each ingested one tablet of the drug, and urine samples were collected over 50 days in postadministration phase. The complete detection of the three fractions (free fraction, glucuronide fraction, and sulfate fraction) of the metabolites was carried out. The GC-Orbitrap-HRMS full-scan mode was employed to detect postadministration urine samples, comparing these with preadministration baseline urine samples to identify newly formed substances. Electron ionization (EI) mass spectra were used to infer possible metabolite structures, leading to the discovery of three novel metabolites of oxymetholone and two novel metabolites of methasterone. Notably, the newly identified oxymetholone metabolite, 2-methylene-17α-methyl-androstane-16ξ,17β-diol-3-one (O-M6), was detectable as a glucuronide conjugate up to 4 days after administration. The methasterone metabolite, 18-nor-17β-hydroxymethyl-2α,17α-dimethyl-5α-androst-13-en-3-one (M-M4), exhibited prolonged detectability as a glucuronide conjugate, being present in urine samples from both volunteers up to 50 days after administration. These findings have significant implications for antidoping purpose, providing extended detection windows for these anabolic steroids.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"84 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c06026","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Oxymetholone and methasterone are anabolic androgenic steroids prohibited by the World Anti-Doping Agency (WADA) for both in-competition and out-of-competition use. Detecting metabolites of exogenous steroids is crucial for establishing doping violations, making the study of these metabolites essential in antidoping efforts. This study investigated the urinary metabolic profiles of oxymetholone and methasterone using gas chromatography-orbitrap high-resolution mass spectrometry (GC-Orbitrap-HRMS) in nanogram level by utilizing a novel multiplex nontargeted framework protocol. Healthy volunteers each ingested one tablet of the drug, and urine samples were collected over 50 days in postadministration phase. The complete detection of the three fractions (free fraction, glucuronide fraction, and sulfate fraction) of the metabolites was carried out. The GC-Orbitrap-HRMS full-scan mode was employed to detect postadministration urine samples, comparing these with preadministration baseline urine samples to identify newly formed substances. Electron ionization (EI) mass spectra were used to infer possible metabolite structures, leading to the discovery of three novel metabolites of oxymetholone and two novel metabolites of methasterone. Notably, the newly identified oxymetholone metabolite, 2-methylene-17α-methyl-androstane-16ξ,17β-diol-3-one (O-M6), was detectable as a glucuronide conjugate up to 4 days after administration. The methasterone metabolite, 18-nor-17β-hydroxymethyl-2α,17α-dimethyl-5α-androst-13-en-3-one (M-M4), exhibited prolonged detectability as a glucuronide conjugate, being present in urine samples from both volunteers up to 50 days after administration. These findings have significant implications for antidoping purpose, providing extended detection windows for these anabolic steroids.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.