{"title":"Dual-Modal Gesture Recognition Using Adaptive Weight Hierarchical Soft Voting Mechanism","authors":"Yue Zhang;Sheng Wei;Zheng Wang;Honghai Liu","doi":"10.1109/TCYB.2025.3525652","DOIUrl":null,"url":null,"abstract":"Muscle force and morphology information offer complementary perspectives for gesture recognition and its applications. Surface Electromyography (sEMG) provides force and electrophysiological information associated with muscles, while A-mode ultrasound (AUS) reveals muscle morphological information. By leveraging these two modalities, more comprehensive muscle motor unit information relevant to gesture recognition can be obtained. In this article, we introduce the adaptive weight classification (AWC) module and its enhanced version with hierarchical classifiers, adaptive weight hierarchical soft voting (AWHSV), to integrate AUS and sEMG into a fused modality. This approach dynamically adjusts the weights of individual and fused features, compensating for lost details during fusion, leading to a richer information representation and significantly improving algorithm robustness in gesture recognition. The experimental results demonstrate that the proposed method achieves recognition rates that are 0.66%, 2.36%, and 1.30% higher than those of its counterparts using sEMG, AUS, and sEMG-AUS, respectively. Moreover, the method outperforms state-of-the-art approaches, confirming its effectiveness in gesture recognition across both single and multiple modalities. This work demonstrates the advantages of the proposed AWHSV method, providing broader application scenarios for gesture recognition.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"55 3","pages":"1497-1508"},"PeriodicalIF":9.4000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10856208/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Muscle force and morphology information offer complementary perspectives for gesture recognition and its applications. Surface Electromyography (sEMG) provides force and electrophysiological information associated with muscles, while A-mode ultrasound (AUS) reveals muscle morphological information. By leveraging these two modalities, more comprehensive muscle motor unit information relevant to gesture recognition can be obtained. In this article, we introduce the adaptive weight classification (AWC) module and its enhanced version with hierarchical classifiers, adaptive weight hierarchical soft voting (AWHSV), to integrate AUS and sEMG into a fused modality. This approach dynamically adjusts the weights of individual and fused features, compensating for lost details during fusion, leading to a richer information representation and significantly improving algorithm robustness in gesture recognition. The experimental results demonstrate that the proposed method achieves recognition rates that are 0.66%, 2.36%, and 1.30% higher than those of its counterparts using sEMG, AUS, and sEMG-AUS, respectively. Moreover, the method outperforms state-of-the-art approaches, confirming its effectiveness in gesture recognition across both single and multiple modalities. This work demonstrates the advantages of the proposed AWHSV method, providing broader application scenarios for gesture recognition.
期刊介绍:
The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.