Integrated transcriptomic analysis reveals dysregulated immune infiltration and pro-inflammatory cytokines in the secretory endometrium of recurrent implantation failure patients.
Ping Zhou, Dan Mo, Hanji Huang, Jiaqi Xu, Baoying Liao, Yinxue Wang, Di Mao, Zhonghong Zeng, Ziying Huang, Chao Zhang, Yihua Yang, Yang Yu, Heng Pan, Rong Li
{"title":"Integrated transcriptomic analysis reveals dysregulated immune infiltration and pro-inflammatory cytokines in the secretory endometrium of recurrent implantation failure patients.","authors":"Ping Zhou, Dan Mo, Hanji Huang, Jiaqi Xu, Baoying Liao, Yinxue Wang, Di Mao, Zhonghong Zeng, Ziying Huang, Chao Zhang, Yihua Yang, Yang Yu, Heng Pan, Rong Li","doi":"10.1093/lifemedi/lnae036","DOIUrl":null,"url":null,"abstract":"<p><p>Recurrent implantation failure (RIF) is a leading impediment to assisted reproductive technology, yet the underlying pathogenesis of RIF remains elusive. Recent studies have sought to uncover novel biomarkers and etiological factors of RIF by profiling transcriptomes of endometrial samples. Nonetheless, the inherent heterogeneity among published studies and a scarcity of experimental validations hinder the identification of robust markers of RIF. Hence, we integrated six publicly accessible datasets with 209 samples, including microarray profiles of endometrial samples in the secretory phase. After removing batch effects, we identified 175 differentially expressed genes. Gene set enrichment analysis identified dysregulation of immunological pathways in RIF. We also observed altered immune infiltration and pro-inflammatory cytokines in RIF. Protein-protein interaction network analysis identified ten hub genes, representing two co-expression modules significantly related to RIF. Knockdown of <i>ENTPD3</i>, one of the hub genes, promoted the epithelial-mesenchymal transition process and resulted in elevated levels of pro-inflammatory cytokines. Collectively, our study reveals abnormal gene expressions involving the regulation of epithelial-mesenchymal transition and immune status in RIF, providing valuable insights into its pathogenesis.</p>","PeriodicalId":74073,"journal":{"name":"Life medicine","volume":"3 5","pages":"lnae036"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11749484/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/lifemedi/lnae036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Recurrent implantation failure (RIF) is a leading impediment to assisted reproductive technology, yet the underlying pathogenesis of RIF remains elusive. Recent studies have sought to uncover novel biomarkers and etiological factors of RIF by profiling transcriptomes of endometrial samples. Nonetheless, the inherent heterogeneity among published studies and a scarcity of experimental validations hinder the identification of robust markers of RIF. Hence, we integrated six publicly accessible datasets with 209 samples, including microarray profiles of endometrial samples in the secretory phase. After removing batch effects, we identified 175 differentially expressed genes. Gene set enrichment analysis identified dysregulation of immunological pathways in RIF. We also observed altered immune infiltration and pro-inflammatory cytokines in RIF. Protein-protein interaction network analysis identified ten hub genes, representing two co-expression modules significantly related to RIF. Knockdown of ENTPD3, one of the hub genes, promoted the epithelial-mesenchymal transition process and resulted in elevated levels of pro-inflammatory cytokines. Collectively, our study reveals abnormal gene expressions involving the regulation of epithelial-mesenchymal transition and immune status in RIF, providing valuable insights into its pathogenesis.