{"title":"Amplifying Electron-Donor Signal of the “Water Gate” Enabled Low Detection Ability of a Field-Effect Transistor-Based Humidity Sensor","authors":"Bohao Liu, Qingqing Chen, Jinyong Hu, Yong Zhang","doi":"10.1021/acs.analchem.4c04975","DOIUrl":null,"url":null,"abstract":"Low humidity detection down to the parts per million level is urgently demanded in various industrial applications. The hardly detected tiny electrical signal variations caused by a very small amount of water adsorption are one of the intrinsic reasons that restrain the detection limit of the humidity sensors. Herein, a carbon-based field-effect transistor (FET) humidity sensor utilizing adsorbed water as the dual function of a sensing gate and analyte was proposed. Owing to the electron donor property of the “water gate” that can serve as a negative voltage exerted on the dielectric layer, the electrical conductivity of the FET’s channel can be significantly modulated, therefore realizing signal amplification. The proposed sensor presents a detection limit of lower than 1% RH. Besides, the fabricated sensors show good batch consistency (response deviation of 0.5%), repeatability, long-term stability, and acceptable hysteresis (6.3% relative humidity (RH)) in humidity detection. We hope that our work can offer a novel strategy for the application and integration of low humidity detection from the device aspect rather than sensing materials synthesis.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"101 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c04975","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Low humidity detection down to the parts per million level is urgently demanded in various industrial applications. The hardly detected tiny electrical signal variations caused by a very small amount of water adsorption are one of the intrinsic reasons that restrain the detection limit of the humidity sensors. Herein, a carbon-based field-effect transistor (FET) humidity sensor utilizing adsorbed water as the dual function of a sensing gate and analyte was proposed. Owing to the electron donor property of the “water gate” that can serve as a negative voltage exerted on the dielectric layer, the electrical conductivity of the FET’s channel can be significantly modulated, therefore realizing signal amplification. The proposed sensor presents a detection limit of lower than 1% RH. Besides, the fabricated sensors show good batch consistency (response deviation of 0.5%), repeatability, long-term stability, and acceptable hysteresis (6.3% relative humidity (RH)) in humidity detection. We hope that our work can offer a novel strategy for the application and integration of low humidity detection from the device aspect rather than sensing materials synthesis.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.