Distinct functional roles of narrow and broadband high-gamma activities in human primary somatosensory cortex.

IF 2.1 3区 医学 Q3 NEUROSCIENCES
Journal of neurophysiology Pub Date : 2025-03-01 Epub Date: 2025-01-27 DOI:10.1152/jn.00159.2024
Seokyun Ryun, Seokbeen Lim, Dong Pyo Jang, Chun Kee Chung
{"title":"Distinct functional roles of narrow and broadband high-gamma activities in human primary somatosensory cortex.","authors":"Seokyun Ryun, Seokbeen Lim, Dong Pyo Jang, Chun Kee Chung","doi":"10.1152/jn.00159.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Previous studies have shown that high-gamma (HG) activity in the primary visual cortex (V1) has distinct higher (broadband) and lower (narrowband) components with different functions and origins. However, it is unclear whether similar segregation exists in the primary somatosensory cortex (S1), and the origins and roles of HG activity in S1 remain unknown. Here, we investigate functional roles and origins of HG activity in S1 during tactile stimulation in humans and a rat model. In the human experiment, lower-frequency HG (50-70 Hz, LHG) was more sensitive to sustained tactile intensity compared with higher-frequency HG (70-150 Hz, HHG). HHG activity varied depending on the ratio of low and high mechanical frequencies, with its pattern reflecting a mixture of neural activities corresponding to them. Furthermore, classification analysis revealed that HHG activity contains more information about texture surfaces compared with LHG activity. In the rat experiment, we found that both HHG and LHG activities are strongest in the somatosensory input layer (layer IV), similar to findings in V1. Interestingly, spike-triggered local field potential (stLFP) analysis revealed significant HG oscillations exclusively in layer IV, indicating a dominant coupling between neuronal firing and HG oscillations in this layer. In summary, HHG activity is associated with detecting changes in the rate of contact force and subtle skin deformations whereas LHG activity reflects the absolute amount of applied contact force. Finally, both HHG and LHG originated in layer IV of S1.<b>NEW & NOTEWORTHY</b> We investigated the functional roles and origins of high-gamma (HG) activity in the primary somatosensory cortex (S1). The higher-frequency component of HG activity is associated with detecting changes in the rate of contact force and subtle skin deformations whereas the lower-frequency component reflects the absolute magnitude of the applied contact force. Both types of HG activity were found to originate in layer IV of S1.</p>","PeriodicalId":16563,"journal":{"name":"Journal of neurophysiology","volume":" ","pages":"839-852"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/jn.00159.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Previous studies have shown that high-gamma (HG) activity in the primary visual cortex (V1) has distinct higher (broadband) and lower (narrowband) components with different functions and origins. However, it is unclear whether similar segregation exists in the primary somatosensory cortex (S1), and the origins and roles of HG activity in S1 remain unknown. Here, we investigate functional roles and origins of HG activity in S1 during tactile stimulation in humans and a rat model. In the human experiment, lower-frequency HG (50-70 Hz, LHG) was more sensitive to sustained tactile intensity compared with higher-frequency HG (70-150 Hz, HHG). HHG activity varied depending on the ratio of low and high mechanical frequencies, with its pattern reflecting a mixture of neural activities corresponding to them. Furthermore, classification analysis revealed that HHG activity contains more information about texture surfaces compared with LHG activity. In the rat experiment, we found that both HHG and LHG activities are strongest in the somatosensory input layer (layer IV), similar to findings in V1. Interestingly, spike-triggered local field potential (stLFP) analysis revealed significant HG oscillations exclusively in layer IV, indicating a dominant coupling between neuronal firing and HG oscillations in this layer. In summary, HHG activity is associated with detecting changes in the rate of contact force and subtle skin deformations whereas LHG activity reflects the absolute amount of applied contact force. Finally, both HHG and LHG originated in layer IV of S1.NEW & NOTEWORTHY We investigated the functional roles and origins of high-gamma (HG) activity in the primary somatosensory cortex (S1). The higher-frequency component of HG activity is associated with detecting changes in the rate of contact force and subtle skin deformations whereas the lower-frequency component reflects the absolute magnitude of the applied contact force. Both types of HG activity were found to originate in layer IV of S1.

窄带和宽带高伽马活动在人类初级体感觉皮层中的不同功能作用。
先前的研究表明,初级视觉皮层(V1)的高伽马(HG)活动具有明显的高(宽带)和低(窄带)成分,具有不同的功能和来源。然而,目前尚不清楚初级体感觉皮层(S1)是否存在类似的分离,并且S1中HG活动的起源和作用仍然未知。在这里,我们研究了人类和大鼠模型在触觉刺激时S1区HG活动的功能作用和起源。在人体实验中,低频HG (50-70 Hz, LHG)比高频HG (70-150 Hz, HHG)对持续触觉强度更敏感。HHG活动的变化取决于机械频率高低的比例,其模式反映了与之相对应的神经活动的混合。此外,分类分析表明,与LHG活动相比,HHG活动包含更多的纹理表面信息。在大鼠实验中,我们发现HHG和LHG活动在体感觉输入层(第4层)最强,与第1层的发现相似。有趣的是,spike-triggered local field potential (stLFP)分析显示,只有在第4层才有显著的HG振荡,这表明神经元放电和该层的HG振荡之间存在主要的耦合。总之,HHG活性与检测接触力速率的变化和细微的皮肤变形有关,而LHG活性反映了施加接触力的绝对量。最后,HHG和LHG都起源于S1的第四层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of neurophysiology
Journal of neurophysiology 医学-神经科学
CiteScore
4.80
自引率
8.00%
发文量
255
审稿时长
2-3 weeks
期刊介绍: The Journal of Neurophysiology publishes original articles on the function of the nervous system. All levels of function are included, from the membrane and cell to systems and behavior. Experimental approaches include molecular neurobiology, cell culture and slice preparations, membrane physiology, developmental neurobiology, functional neuroanatomy, neurochemistry, neuropharmacology, systems electrophysiology, imaging and mapping techniques, and behavioral analysis. Experimental preparations may be invertebrate or vertebrate species, including humans. Theoretical studies are acceptable if they are tied closely to the interpretation of experimental data and elucidate principles of broad interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信