Background: Wheat-maize cropping systems in semi-arid regions are expected to be affected by climate change in the future, which is alarming for global food security, environmental sustainability and socioeconomic development. Therefore, management practices like optimized plant geometry and fertilization need to be explored to counter these expected threats. To do this, the APSIM model was calibrated using 5-year data (from 2017/2018 to 2022) regarding yield, biomass, plant height, emergence, anthesis and crop maturity of wheat and maize from farmer fields.
Results: The performance of a model run was assessed using root mean square error, normalized root mean square error, coefficient of residual mass, coefficient of determination (R2) and Nash-Sutcliffe efficiency, whose average was 1.59, 0.13, 0.001, 0.84 and 0.78, respectively, for calibration while 2.75, 0.20, -0.009, 0.80 and 0.75, respectively, for validation. Regarding crop phenology, it was modelled that the emergence, anthesis and maturity were earlier by 7-9 days, 8-10 days and 2-6 days, respectively, for wheat; 6-10 days, 13-20 days and 16-24 days, respectively, for spring maize; 3-5 days, 5-11 days and 8-19 days, respectively, for autumn maize under different climate change scenarios in near to far future. Simulations revealed the average reduction in the yield of wheat, spring maize and autumn maize by 11.5%, 11.8% and 11.0%, respectively, in near future (2025-2065) while 17.5%, 20.5% and 17.0%, respectively, in far future (2066-2100). Further, simulations discovered the potential of higher levels of fertilization (nitrogen = 60-100 kg ha-1 and phosphorus = 40-75 kg ha-1 for wheat while nitrogen = 75-120 kg ha-1 and phosphorus = 40-80 kg ha-1 for maize) and plant density (100 to 150 plants m-2 for wheat and 8 to 13 plants m-2 for maize) to enhance the yield of wheat, spring maize and autumn maize by 31-36%, 22-38% and 26-43%, respectively, in near future while 33-38%, 21-55% and 19-31%, respectively, in far future.
期刊介绍:
The Journal of the Science of Food and Agriculture publishes peer-reviewed original research, reviews, mini-reviews, perspectives and spotlights in these areas, with particular emphasis on interdisciplinary studies at the agriculture/ food interface.
Published for SCI by John Wiley & Sons Ltd.
SCI (Society of Chemical Industry) is a unique international forum where science meets business on independent, impartial ground. Anyone can join and current Members include consumers, business people, environmentalists, industrialists, farmers, and researchers. The Society offers a chance to share information between sectors as diverse as food and agriculture, pharmaceuticals, biotechnology, materials, chemicals, environmental science and safety. As well as organising educational events, SCI awards a number of prestigious honours and scholarships each year, publishes peer-reviewed journals, and provides Members with news from their sectors in the respected magazine, Chemistry & Industry .
Originally established in London in 1881 and in New York in 1894, SCI is a registered charity with Members in over 70 countries.