Core–Satellite Gold Nanoparticle@Silver Nanocluster Nanohybrids for Milk Allergen β-Lactoglobulin Detection Using the Electrochemical Aptasensor

IF 5.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Tingting Bai, Yanjia Liu, Zhien Liu, Yue Teng, Pin Liu, Liusi Peng, Daohong Wu
{"title":"Core–Satellite Gold Nanoparticle@Silver Nanocluster Nanohybrids for Milk Allergen β-Lactoglobulin Detection Using the Electrochemical Aptasensor","authors":"Tingting Bai, Yanjia Liu, Zhien Liu, Yue Teng, Pin Liu, Liusi Peng, Daohong Wu","doi":"10.1021/acs.jafc.4c08948","DOIUrl":null,"url":null,"abstract":"Detecting β-lactoglobulin (β-Lg) with high sensitivity and selectivity is an urgent requirement due to nearly 80% of milk anaphylaxis, such as respiratory tract, skin urticaria, and gastrointestinal disorders, being caused by β-Lg. An ultrasensitive β-Lg electrochemical aptasensor utilizing core–satellite gold nanoparticle@silver nanocluster (AuNPs@AgNCs) nanohybrids as electrocatalysts was developed. First, β-Lg aptamer was anchored on gold electrodes and AuNPs to obtain high selectivity. Aptamer-cDNA-AuNPs conjugation was attached to the functionalized electrode with β-Lg as a “bridge” through the target–ligand interaction. Second, DNA-templated AgNCs were introduced via the hybridization of DNA templates oligonucleotide with cDNA anchored on AuNPs. The formed AuNPs@AgNCs nanohybrids showed enhanced catalytic performance toward the silver deposition reaction. This strategy is demonstrated by determining the oxidation current of produced silver nanoparticles (AgNPs) surrounding AuNPs by β-Lg. A detection limit of 0.87 fg/mL and a linear range of 0.001–1000 pg/mL were obtained. Finally, β-Lg content in food products was analyzed successfully, and RSD of 2.44–8.33% was obtained. The recovery of 87.54–113.70% and RSD of 0.95–9.29% was obtained for standard addition experiments. This proposed aptasensor exhibits excellent sensitivity, selectivity, reproducibility, and stability and has good practical application capability for complex food matrices.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"32 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c08948","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting β-lactoglobulin (β-Lg) with high sensitivity and selectivity is an urgent requirement due to nearly 80% of milk anaphylaxis, such as respiratory tract, skin urticaria, and gastrointestinal disorders, being caused by β-Lg. An ultrasensitive β-Lg electrochemical aptasensor utilizing core–satellite gold nanoparticle@silver nanocluster (AuNPs@AgNCs) nanohybrids as electrocatalysts was developed. First, β-Lg aptamer was anchored on gold electrodes and AuNPs to obtain high selectivity. Aptamer-cDNA-AuNPs conjugation was attached to the functionalized electrode with β-Lg as a “bridge” through the target–ligand interaction. Second, DNA-templated AgNCs were introduced via the hybridization of DNA templates oligonucleotide with cDNA anchored on AuNPs. The formed AuNPs@AgNCs nanohybrids showed enhanced catalytic performance toward the silver deposition reaction. This strategy is demonstrated by determining the oxidation current of produced silver nanoparticles (AgNPs) surrounding AuNPs by β-Lg. A detection limit of 0.87 fg/mL and a linear range of 0.001–1000 pg/mL were obtained. Finally, β-Lg content in food products was analyzed successfully, and RSD of 2.44–8.33% was obtained. The recovery of 87.54–113.70% and RSD of 0.95–9.29% was obtained for standard addition experiments. This proposed aptasensor exhibits excellent sensitivity, selectivity, reproducibility, and stability and has good practical application capability for complex food matrices.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Agricultural and Food Chemistry
Journal of Agricultural and Food Chemistry 农林科学-农业综合
CiteScore
9.90
自引率
8.20%
发文量
1375
审稿时长
2.3 months
期刊介绍: The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信