A VersaTile Approach to Reprogram the Specificity of the R2-Type Tailocin Towards Different Serotypes of Escherichia coli and Klebsiella pneumoniae.

IF 4.3 2区 医学 Q1 INFECTIOUS DISEASES
Dorien Dams, Célia Pas, Agnieszka Latka, Zuzanna Drulis-Kawa, Lars Fieseler, Yves Briers
{"title":"A VersaTile Approach to Reprogram the Specificity of the R2-Type Tailocin Towards Different Serotypes of <i>Escherichia coli</i> and <i>Klebsiella pneumoniae</i>.","authors":"Dorien Dams, Célia Pas, Agnieszka Latka, Zuzanna Drulis-Kawa, Lars Fieseler, Yves Briers","doi":"10.3390/antibiotics14010104","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Phage tail-like bacteriocins, or tailocins, provide a competitive advantage to producer cells by killing closely related bacteria. Morphologically similar to headless phages, their narrow target specificity is determined by receptor-binding proteins (RBPs). While RBP engineering has been used to alter the target range of a selected R2 tailocin from <i>Pseudomonas aeruginosa</i>, the process is labor-intensive, limiting broader application. <b>Methods:</b> We introduce a VersaTile-driven R2 tailocin engineering and screening platform to scale up RBP grafting. <b>Results:</b> This platform achieved three key milestones: (I) engineering R2 tailocins specific to <i>Escherichia coli</i> serogroups O26, O103, O104, O111, O145, O146, and O157; (II) reprogramming R2 tailocins to target, for the first time, the capsule and a new species, specifically the capsular serotype K1 of <i>E. coli</i> and K11 and K63 of <i>Klebsiella pneumoniae</i>; (III) creating the first bivalent tailocin with a branched RBP and cross-species activity, effective against both <i>E. coli</i> K1 and <i>K. pneumoniae</i> K11. Over 90% of engineered tailocins were effective, with clear pathways for further optimization identified. <b>Conclusions:</b> This work lays the groundwork for a scalable platform for the development of engineered tailocins, marking an important step towards making R2 tailocins a practical therapeutic tool for targeted bacterial infections.</p>","PeriodicalId":54246,"journal":{"name":"Antibiotics-Basel","volume":"14 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762384/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibiotics-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antibiotics14010104","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Phage tail-like bacteriocins, or tailocins, provide a competitive advantage to producer cells by killing closely related bacteria. Morphologically similar to headless phages, their narrow target specificity is determined by receptor-binding proteins (RBPs). While RBP engineering has been used to alter the target range of a selected R2 tailocin from Pseudomonas aeruginosa, the process is labor-intensive, limiting broader application. Methods: We introduce a VersaTile-driven R2 tailocin engineering and screening platform to scale up RBP grafting. Results: This platform achieved three key milestones: (I) engineering R2 tailocins specific to Escherichia coli serogroups O26, O103, O104, O111, O145, O146, and O157; (II) reprogramming R2 tailocins to target, for the first time, the capsule and a new species, specifically the capsular serotype K1 of E. coli and K11 and K63 of Klebsiella pneumoniae; (III) creating the first bivalent tailocin with a branched RBP and cross-species activity, effective against both E. coli K1 and K. pneumoniae K11. Over 90% of engineered tailocins were effective, with clear pathways for further optimization identified. Conclusions: This work lays the groundwork for a scalable platform for the development of engineered tailocins, marking an important step towards making R2 tailocins a practical therapeutic tool for targeted bacterial infections.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Antibiotics-Basel
Antibiotics-Basel Pharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
7.30
自引率
14.60%
发文量
1547
审稿时长
11 weeks
期刊介绍: Antibiotics (ISSN 2079-6382) is an open access, peer reviewed journal on all aspects of antibiotics. Antibiotics is a multi-disciplinary journal encompassing the general fields of biochemistry, chemistry, genetics, microbiology and pharmacology. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信