Interpretation of individual differences in computational neuroscience using a latent input approach.

IF 4.6 2区 医学 Q1 NEUROSCIENCES
Jessica V Schaaf, Steven Miletić, Anna C K van Duijvenvoorde, Hilde M Huizenga
{"title":"Interpretation of individual differences in computational neuroscience using a latent input approach.","authors":"Jessica V Schaaf, Steven Miletić, Anna C K van Duijvenvoorde, Hilde M Huizenga","doi":"10.1016/j.dcn.2025.101512","DOIUrl":null,"url":null,"abstract":"<p><p>Computational neuroscience offers a valuable opportunity to understand the neural mechanisms underlying behavior. However, interpreting individual differences in these mechanisms, such as developmental differences, is less straightforward. We illustrate this challenge through studies that examine individual differences in reinforcement learning. In these studies, a computational model generates an individual-specific prediction error regressor to model activity in a brain region of interest. Individual differences in the resulting regression weight are typically interpreted as individual differences in neural coding. We first demonstrate that the absence of individual differences in neural coding is not problematic, as such differences are already captured in the individual specific regressor. We then review that the presence of individual differences is typically interpreted as individual differences in the use of brain resources. However, through simulations, we illustrate that these differences could also stem from other factors such as the standardization of the prediction error, individual differences in brain networks outside the region of interest, individual differences in the duration of the prediction error response, individual differences in outcome valuation, and in overlooked individual differences in computational model parameters or the type of computational model. To clarify these interpretations, we provide several recommendations. In this manner we aim to advance the understanding and interpretation of individual differences in computational neuroscience.</p>","PeriodicalId":49083,"journal":{"name":"Developmental Cognitive Neuroscience","volume":"72 ","pages":"101512"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.dcn.2025.101512","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Computational neuroscience offers a valuable opportunity to understand the neural mechanisms underlying behavior. However, interpreting individual differences in these mechanisms, such as developmental differences, is less straightforward. We illustrate this challenge through studies that examine individual differences in reinforcement learning. In these studies, a computational model generates an individual-specific prediction error regressor to model activity in a brain region of interest. Individual differences in the resulting regression weight are typically interpreted as individual differences in neural coding. We first demonstrate that the absence of individual differences in neural coding is not problematic, as such differences are already captured in the individual specific regressor. We then review that the presence of individual differences is typically interpreted as individual differences in the use of brain resources. However, through simulations, we illustrate that these differences could also stem from other factors such as the standardization of the prediction error, individual differences in brain networks outside the region of interest, individual differences in the duration of the prediction error response, individual differences in outcome valuation, and in overlooked individual differences in computational model parameters or the type of computational model. To clarify these interpretations, we provide several recommendations. In this manner we aim to advance the understanding and interpretation of individual differences in computational neuroscience.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.60
自引率
10.60%
发文量
124
审稿时长
6-12 weeks
期刊介绍: The journal publishes theoretical and research papers on cognitive brain development, from infancy through childhood and adolescence and into adulthood. It covers neurocognitive development and neurocognitive processing in both typical and atypical development, including social and affective aspects. Appropriate methodologies for the journal include, but are not limited to, functional neuroimaging (fMRI and MEG), electrophysiology (EEG and ERP), NIRS and transcranial magnetic stimulation, as well as other basic neuroscience approaches using cellular and animal models that directly address cognitive brain development, patient studies, case studies, post-mortem studies and pharmacological studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信