Two-brain microstates: A novel hyperscanning-EEG method for quantifying task-driven inter-brain asymmetry.

IF 2.7 4区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Qianliang Li, Marius Zimmermann, Ivana Konvalinka
{"title":"Two-brain microstates: A novel hyperscanning-EEG method for quantifying task-driven inter-brain asymmetry.","authors":"Qianliang Li, Marius Zimmermann, Ivana Konvalinka","doi":"10.1016/j.jneumeth.2024.110355","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The neural mechanisms underlying real-time social interaction remain poorly understood. While hyperscanning has emerged as a popular method to better understand inter-brain mechanisms, inter-brain methods remain underdeveloped, and primarily focused on inter-brain synchronization (IBS).</p><p><strong>New method: </strong>We developed a novel approach employing two-brain EEG microstates, to investigate neural mechanisms during symmetric and asymmetric interactive tasks. Microstates are quasi-stable configurations of brain activity that have been proposed to represent basic building blocks for mental processing. Expanding the microstate methodology to dyads of interacting participants enables us to investigate quasi-stable moments of inter-brain synchronous and asymmetric activity.</p><p><strong>Results: </strong>Conventional microstates fitted to individuals were not related to the different interactive conditions. However, two-brain microstates were modulated in the observer-actor condition, compared to all other conditions where participants had more symmetric task demands, and the same trend was observed for the follower-leader condition. This indicates differences in resting state default-mode network activity during interactions with asymmetric tasks.</p><p><strong>Comparison with existing methods: </strong>Hyperscanning studies have primarily estimated IBS based on functional connectivity measures. However, localized connections are often hard to interpret on a larger scale when multiple connections across brains are found to be important. Two-brain microstates offer an alternative approach to evaluate neural activity from a large-scale global network perspective, by quantifying task-driven asymmetric neural states between interacting individuals.</p><p><strong>Conclusions: </strong>We present a novel method using two-brain microstates, including open-source code, which expands the current hyperscanning-EEG methodology to measure and potentially identify both synchronous and asymmetric inter-brain states during real-time social interaction.</p>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":" ","pages":"110355"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jneumeth.2024.110355","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The neural mechanisms underlying real-time social interaction remain poorly understood. While hyperscanning has emerged as a popular method to better understand inter-brain mechanisms, inter-brain methods remain underdeveloped, and primarily focused on inter-brain synchronization (IBS).

New method: We developed a novel approach employing two-brain EEG microstates, to investigate neural mechanisms during symmetric and asymmetric interactive tasks. Microstates are quasi-stable configurations of brain activity that have been proposed to represent basic building blocks for mental processing. Expanding the microstate methodology to dyads of interacting participants enables us to investigate quasi-stable moments of inter-brain synchronous and asymmetric activity.

Results: Conventional microstates fitted to individuals were not related to the different interactive conditions. However, two-brain microstates were modulated in the observer-actor condition, compared to all other conditions where participants had more symmetric task demands, and the same trend was observed for the follower-leader condition. This indicates differences in resting state default-mode network activity during interactions with asymmetric tasks.

Comparison with existing methods: Hyperscanning studies have primarily estimated IBS based on functional connectivity measures. However, localized connections are often hard to interpret on a larger scale when multiple connections across brains are found to be important. Two-brain microstates offer an alternative approach to evaluate neural activity from a large-scale global network perspective, by quantifying task-driven asymmetric neural states between interacting individuals.

Conclusions: We present a novel method using two-brain microstates, including open-source code, which expands the current hyperscanning-EEG methodology to measure and potentially identify both synchronous and asymmetric inter-brain states during real-time social interaction.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Neuroscience Methods
Journal of Neuroscience Methods 医学-神经科学
CiteScore
7.10
自引率
3.30%
发文量
226
审稿时长
52 days
期刊介绍: The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信