The Regulation of ROS and Phytohormones in Balancing Crop Yield and Salt Tolerance.

IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Lei Jiang, Minggang Xiao, Rongfeng Huang, Juan Wang
{"title":"The Regulation of ROS and Phytohormones in Balancing Crop Yield and Salt Tolerance.","authors":"Lei Jiang, Minggang Xiao, Rongfeng Huang, Juan Wang","doi":"10.3390/antiox14010063","DOIUrl":null,"url":null,"abstract":"<p><p>Salinity affects crop growth and productivity, and this stress can be increased along with drought or high temperature stresses and poor irrigation management. Cultivation of salt-tolerant crops plays a critical role in enhancing crop yield under salt stress. In the past few decades, the mechanisms of plant adaptation to salt stress have been described, especially relying on ionic homeostasis, reactive oxygen species (ROS) scavenging, and phytohormone signaling. The studies of these molecular mechanisms have provided a basis for breeding new salt-tolerant crop germplasm and have facilitated the entry into the era of molecular breeding of salt-tolerant crops. In this review, we outline the recent progress in the molecular regulations underlying crop salt tolerance, focusing on the double-edged sword effect of ROS, the regulatory role of phytohormones, and the trade-off effects of ROS and phytohormones between crop yield and salt tolerance. A future challenge is to identify superior alleles of key salt-tolerant genes that will accelerate the breeding of high-yield and salt-tolerant varieties.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761564/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14010063","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Salinity affects crop growth and productivity, and this stress can be increased along with drought or high temperature stresses and poor irrigation management. Cultivation of salt-tolerant crops plays a critical role in enhancing crop yield under salt stress. In the past few decades, the mechanisms of plant adaptation to salt stress have been described, especially relying on ionic homeostasis, reactive oxygen species (ROS) scavenging, and phytohormone signaling. The studies of these molecular mechanisms have provided a basis for breeding new salt-tolerant crop germplasm and have facilitated the entry into the era of molecular breeding of salt-tolerant crops. In this review, we outline the recent progress in the molecular regulations underlying crop salt tolerance, focusing on the double-edged sword effect of ROS, the regulatory role of phytohormones, and the trade-off effects of ROS and phytohormones between crop yield and salt tolerance. A future challenge is to identify superior alleles of key salt-tolerant genes that will accelerate the breeding of high-yield and salt-tolerant varieties.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Antioxidants
Antioxidants Biochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍: Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信