Regulation of Exogenous Strigolactone on Storage Substance Metabolism and Endogenous Hormone Levels in the Early Germination Stage of Rice Seeds Under Salt Stress.

IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jianqin Zhang, Dianfeng Zheng, Naijie Feng, Aaqil Khan, Rui Deng, Jian Xiong, Linchong Ding, Zhiyuan Sun, Jiahuan Li, Xiaohui Yang, Chen Wu
{"title":"Regulation of Exogenous Strigolactone on Storage Substance Metabolism and Endogenous Hormone Levels in the Early Germination Stage of Rice Seeds Under Salt Stress.","authors":"Jianqin Zhang, Dianfeng Zheng, Naijie Feng, Aaqil Khan, Rui Deng, Jian Xiong, Linchong Ding, Zhiyuan Sun, Jiahuan Li, Xiaohui Yang, Chen Wu","doi":"10.3390/antiox14010022","DOIUrl":null,"url":null,"abstract":"<p><p>Salt stress inhibits rice seed germination. Strigolactone (GR24) plays a vital role in enhancing plant tolerance against salt stress. However, GR24's impact on the metabolism of stored substances and endogenous hormones remains unclear. This study investigated the impact of exogenous GR24 on the metabolism of stored substances and endogenous hormones during the early stages of rice seed germination under salt stress. The results showed that salt stress significantly reduced the germination rate, germination potential, germination index, radicle length, germ length, and fresh and dry weights of the radicle and germ under salt stress. Pre-treatment (1.2 μmol L<sup>-1</sup> GR24) significantly reduced the inhibition of salt stress on rice seed germination and seedling growth. GR24 promoted the decomposition of starch by enhancing the activities of α-amylase, β-amylase, and total amylase and improved the levels of soluble sugars and proteins and the conversion rate of substances under salt stress. GR24 effectively enhanced the activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX); increased ascorbic acid (ASA) and glutathione (GSH) levels; and reduced malondialdehyde (MDA) content. This reduced the oxidative damage of salt stress. Furthermore, GR24 significantly increased the contents of strigolactones (SLs), auxin (IAA), gibberellin (GA3), cytokinin (CTK) as well as IAA/ABA, CTK/ABA, GA/ABA, and SL/ABA ratios and reduced abscisic acid (ABA) levels. The current findings indicate that GR24 effectively mitigates the adverse impact salt stress by regulating antioxidant enzyme activity and endogenous hormone balance.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760831/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14010022","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Salt stress inhibits rice seed germination. Strigolactone (GR24) plays a vital role in enhancing plant tolerance against salt stress. However, GR24's impact on the metabolism of stored substances and endogenous hormones remains unclear. This study investigated the impact of exogenous GR24 on the metabolism of stored substances and endogenous hormones during the early stages of rice seed germination under salt stress. The results showed that salt stress significantly reduced the germination rate, germination potential, germination index, radicle length, germ length, and fresh and dry weights of the radicle and germ under salt stress. Pre-treatment (1.2 μmol L-1 GR24) significantly reduced the inhibition of salt stress on rice seed germination and seedling growth. GR24 promoted the decomposition of starch by enhancing the activities of α-amylase, β-amylase, and total amylase and improved the levels of soluble sugars and proteins and the conversion rate of substances under salt stress. GR24 effectively enhanced the activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX); increased ascorbic acid (ASA) and glutathione (GSH) levels; and reduced malondialdehyde (MDA) content. This reduced the oxidative damage of salt stress. Furthermore, GR24 significantly increased the contents of strigolactones (SLs), auxin (IAA), gibberellin (GA3), cytokinin (CTK) as well as IAA/ABA, CTK/ABA, GA/ABA, and SL/ABA ratios and reduced abscisic acid (ABA) levels. The current findings indicate that GR24 effectively mitigates the adverse impact salt stress by regulating antioxidant enzyme activity and endogenous hormone balance.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Antioxidants
Antioxidants Biochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍: Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信