Evaluating Diagnostic Accuracy and Treatment Efficacy in Mental Health: A Comparative Analysis of Large Language Model Tools and Mental Health Professionals.

IF 3 Q1 PSYCHOLOGY, CLINICAL
Inbar Levkovich
{"title":"Evaluating Diagnostic Accuracy and Treatment Efficacy in Mental Health: A Comparative Analysis of Large Language Model Tools and Mental Health Professionals.","authors":"Inbar Levkovich","doi":"10.3390/ejihpe15010009","DOIUrl":null,"url":null,"abstract":"<p><p>Large language models (LLMs) offer promising possibilities in mental health, yet their ability to assess disorders and recommend treatments remains underexplored. This quantitative cross-sectional study evaluated four LLMs (Gemini (Gemini 2.0 Flash Experimental), Claude (Claude 3.5 Sonnet), ChatGPT-3.5, and ChatGPT-4) using text vignettes representing conditions such as depression, suicidal ideation, early and chronic schizophrenia, social phobia, and PTSD. Each model's diagnostic accuracy, treatment recommendations, and predicted outcomes were compared with norms established by mental health professionals. Findings indicated that for certain conditions, including depression and PTSD, models like ChatGPT-4 achieved higher diagnostic accuracy compared to human professionals. However, in more complex cases, such as early schizophrenia, LLM performance varied, with ChatGPT-4 achieving only 55% accuracy, while other LLMs and professionals performed better. LLMs tended to suggest a broader range of proactive treatments, whereas professionals recommended more targeted psychiatric consultations and specific medications. In terms of outcome predictions, professionals were generally more optimistic regarding full recovery, especially with treatment, while LLMs predicted lower full recovery rates and higher partial recovery rates, particularly in untreated cases. While LLMs recommend a broader treatment range, their conservative recovery predictions, particularly for complex conditions, highlight the need for professional oversight. LLMs provide valuable support in diagnostics and treatment planning but cannot replace professional discretion.</p>","PeriodicalId":30631,"journal":{"name":"European Journal of Investigation in Health Psychology and Education","volume":"15 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765082/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Investigation in Health Psychology and Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ejihpe15010009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, CLINICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Large language models (LLMs) offer promising possibilities in mental health, yet their ability to assess disorders and recommend treatments remains underexplored. This quantitative cross-sectional study evaluated four LLMs (Gemini (Gemini 2.0 Flash Experimental), Claude (Claude 3.5 Sonnet), ChatGPT-3.5, and ChatGPT-4) using text vignettes representing conditions such as depression, suicidal ideation, early and chronic schizophrenia, social phobia, and PTSD. Each model's diagnostic accuracy, treatment recommendations, and predicted outcomes were compared with norms established by mental health professionals. Findings indicated that for certain conditions, including depression and PTSD, models like ChatGPT-4 achieved higher diagnostic accuracy compared to human professionals. However, in more complex cases, such as early schizophrenia, LLM performance varied, with ChatGPT-4 achieving only 55% accuracy, while other LLMs and professionals performed better. LLMs tended to suggest a broader range of proactive treatments, whereas professionals recommended more targeted psychiatric consultations and specific medications. In terms of outcome predictions, professionals were generally more optimistic regarding full recovery, especially with treatment, while LLMs predicted lower full recovery rates and higher partial recovery rates, particularly in untreated cases. While LLMs recommend a broader treatment range, their conservative recovery predictions, particularly for complex conditions, highlight the need for professional oversight. LLMs provide valuable support in diagnostics and treatment planning but cannot replace professional discretion.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
12.50%
发文量
111
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信