Strategy for enhancing Cistanche deserticola drying efficiency and quality based on novel freeze-infrared hybrid drying: moisture transition points control.

IF 3.3 2区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Wenchao Liu, Caiyun Li, Xinyu Wei, Guangyue Ren, Ledao Zhang, Xu Duan, Linlin Li, Weiwei Cao, Junliang Chen
{"title":"Strategy for enhancing Cistanche deserticola drying efficiency and quality based on novel freeze-infrared hybrid drying: moisture transition points control.","authors":"Wenchao Liu, Caiyun Li, Xinyu Wei, Guangyue Ren, Ledao Zhang, Xu Duan, Linlin Li, Weiwei Cao, Junliang Chen","doi":"10.1002/jsfa.14131","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Fresh Cistanche deserticola, a valuable medicinal and dietary ingredient with exceptional functional properties, exhibits a high moisture content and is susceptible to deterioration due to its high moisture content. Therefore, it is imperative to identify an appropriate dehydration method. This study primarily focuses on enhancing the efficiency and quality of dried C. deserticola, through a hybrid drying process that combines freeze-drying (FD) and infrared drying (IRD). The samples were first dehydrated by FD and then transferred to IRD until the end of drying, with different moisture transition points (based on FD durations of 5.5, 6.0, 6.5, and 7.0 h, and the corresponding groups are marked as FD5.5h-IR, FD6.0h-IR, FD6.5h-IR, and FD7.0h-IR).</p><p><strong>Results: </strong>The FD6.5h-IR method proved to be 32.08% more energy efficient than the sole FD method. The microscopic examination revealed that the surfaces of samples treated using the FD6.5h-IR and FD7h-IR techniques were smoother and clearer with smaller and more uniform pores, similar to the microstructure of the solely FD sample. Furthermore, the FD6.5h-IR treatment has been demonstrated to be highly effective in maintaining the retention of active ingredients in products.</p><p><strong>Conclusion: </strong>Given the disadvantage of FD7h-IR treatment in terms of energy consumption, FD6.5h was identified as the best moisture transition point. This investigation offers a theoretical basis for enhancing quality control and refining the process during the FD-IRD processing of newly harvested C. deserticola slices. © 2025 Society of Chemical Industry.</p>","PeriodicalId":17725,"journal":{"name":"Journal of the Science of Food and Agriculture","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Science of Food and Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/jsfa.14131","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Fresh Cistanche deserticola, a valuable medicinal and dietary ingredient with exceptional functional properties, exhibits a high moisture content and is susceptible to deterioration due to its high moisture content. Therefore, it is imperative to identify an appropriate dehydration method. This study primarily focuses on enhancing the efficiency and quality of dried C. deserticola, through a hybrid drying process that combines freeze-drying (FD) and infrared drying (IRD). The samples were first dehydrated by FD and then transferred to IRD until the end of drying, with different moisture transition points (based on FD durations of 5.5, 6.0, 6.5, and 7.0 h, and the corresponding groups are marked as FD5.5h-IR, FD6.0h-IR, FD6.5h-IR, and FD7.0h-IR).

Results: The FD6.5h-IR method proved to be 32.08% more energy efficient than the sole FD method. The microscopic examination revealed that the surfaces of samples treated using the FD6.5h-IR and FD7h-IR techniques were smoother and clearer with smaller and more uniform pores, similar to the microstructure of the solely FD sample. Furthermore, the FD6.5h-IR treatment has been demonstrated to be highly effective in maintaining the retention of active ingredients in products.

Conclusion: Given the disadvantage of FD7h-IR treatment in terms of energy consumption, FD6.5h was identified as the best moisture transition point. This investigation offers a theoretical basis for enhancing quality control and refining the process during the FD-IRD processing of newly harvested C. deserticola slices. © 2025 Society of Chemical Industry.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
4.90%
发文量
634
审稿时长
3.1 months
期刊介绍: The Journal of the Science of Food and Agriculture publishes peer-reviewed original research, reviews, mini-reviews, perspectives and spotlights in these areas, with particular emphasis on interdisciplinary studies at the agriculture/ food interface. Published for SCI by John Wiley & Sons Ltd. SCI (Society of Chemical Industry) is a unique international forum where science meets business on independent, impartial ground. Anyone can join and current Members include consumers, business people, environmentalists, industrialists, farmers, and researchers. The Society offers a chance to share information between sectors as diverse as food and agriculture, pharmaceuticals, biotechnology, materials, chemicals, environmental science and safety. As well as organising educational events, SCI awards a number of prestigious honours and scholarships each year, publishes peer-reviewed journals, and provides Members with news from their sectors in the respected magazine, Chemistry & Industry . Originally established in London in 1881 and in New York in 1894, SCI is a registered charity with Members in over 70 countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信