E46K α-Synuclein Mutation Fails to Promote Neurite Outgrowth by Not Inducing Cdc42EP2 Expression, Unlike Wild-Type or A53T α-Synuclein in SK-N-SH Cells.
{"title":"E46K α-Synuclein Mutation Fails to Promote Neurite Outgrowth by Not Inducing Cdc42EP2 Expression, Unlike Wild-Type or A53T α-Synuclein in SK-N-SH Cells.","authors":"Hyunja Jung, Seonghan Kim","doi":"10.3390/brainsci15010009","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objectives: </strong>α-Synuclein (α-syn) protein is a major pathological agent of familial Parkinson's disease (PD), and its levels and aggregations determine neurotoxicity in PD pathogenesis. Although the pathophysiological functions of α-syn have been extensively studied, its biological functions remain elusive, and there are reports of wild-type (WT) α-syn and two missense mutations of α-syn (A30P and A53T) inducing protective neuritogenesis through neurite outgrowth. However, the function of another α-syn mutation, E46K, has not been fully elucidated. Thus, we compared the effect of E46K α-syn with other types to identify the mechanisms underlying neurite outgrowth.</p><p><strong>Methods: </strong>We transfected SK-N-SH cells with WT and mutant (A53T and E46K) α-syn to investigate the effects of their overexpression on neurite outgrowth. Then, we compared the differential effects of α-syn on neurite outgrowth using microscopic analysis, including confocal microscopy. We also analyzed the differential regulation of cell division control 42 effector protein 2 (Cdc42EP2) using real-time quantitative polymerase chain reaction and western blot analysis. Finally, to confirm the implication of neurite outgrowth, we knocked down Cdc42EP2 using small interfering RNA.</p><p><strong>Results: </strong>Unlike WT and A53T α-syn, E46K α-syn failed to promote neurite outgrowth by not inducing Cdc42EP2 and subsequent βIII-tubulin expression. Cdc42EP2 knockdown impaired neurite outgrowth in WT and A53T α-syn transfectants.</p><p><strong>Conclusions: </strong>Our findings suggest that WT and mutant α-syn are linked to Cdc42EP2 production in neuritogenesis, implying α-syn involvement in the physiological function of axon growth and synapse formation. Thus, α-syn may be a potential therapeutic target for PD.</p>","PeriodicalId":9095,"journal":{"name":"Brain Sciences","volume":"15 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763803/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/brainsci15010009","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background/objectives: α-Synuclein (α-syn) protein is a major pathological agent of familial Parkinson's disease (PD), and its levels and aggregations determine neurotoxicity in PD pathogenesis. Although the pathophysiological functions of α-syn have been extensively studied, its biological functions remain elusive, and there are reports of wild-type (WT) α-syn and two missense mutations of α-syn (A30P and A53T) inducing protective neuritogenesis through neurite outgrowth. However, the function of another α-syn mutation, E46K, has not been fully elucidated. Thus, we compared the effect of E46K α-syn with other types to identify the mechanisms underlying neurite outgrowth.
Methods: We transfected SK-N-SH cells with WT and mutant (A53T and E46K) α-syn to investigate the effects of their overexpression on neurite outgrowth. Then, we compared the differential effects of α-syn on neurite outgrowth using microscopic analysis, including confocal microscopy. We also analyzed the differential regulation of cell division control 42 effector protein 2 (Cdc42EP2) using real-time quantitative polymerase chain reaction and western blot analysis. Finally, to confirm the implication of neurite outgrowth, we knocked down Cdc42EP2 using small interfering RNA.
Results: Unlike WT and A53T α-syn, E46K α-syn failed to promote neurite outgrowth by not inducing Cdc42EP2 and subsequent βIII-tubulin expression. Cdc42EP2 knockdown impaired neurite outgrowth in WT and A53T α-syn transfectants.
Conclusions: Our findings suggest that WT and mutant α-syn are linked to Cdc42EP2 production in neuritogenesis, implying α-syn involvement in the physiological function of axon growth and synapse formation. Thus, α-syn may be a potential therapeutic target for PD.
期刊介绍:
Brain Sciences (ISSN 2076-3425) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications in the areas of cognitive neuroscience, developmental neuroscience, molecular and cellular neuroscience, neural engineering, neuroimaging, neurolinguistics, neuropathy, systems neuroscience, and theoretical and computational neuroscience. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.