Zachary Stryker, Jorge I Castillo-Arellano, Stephen J Cutler, Michael D Wyatt, Francisco León
{"title":"Semi-Synthesis of Dimeric Cannabidiol Derivatives and Evaluation of their Affinity at Neurological Targets.","authors":"Zachary Stryker, Jorge I Castillo-Arellano, Stephen J Cutler, Michael D Wyatt, Francisco León","doi":"10.1021/acs.jnatprod.4c01174","DOIUrl":null,"url":null,"abstract":"<p><p>Cannabidiol (CBD) is a natural product associated with a wide range of biological and therapeutic activities. Despite the widespread cultural acceptance of CBD as a medicinal agent, much remains to be determined regarding its precise mechanism(s) of action in treating multiple conditions. CBD has been shown to promiscuously interact with several neurological targets with varying affinities. To expand the chemical space of phytocannabinoids and develop novel chemical compounds, we have designed and synthesized a series of CBD and Δ<sup>8</sup>-THC homodimers, and CBD/Δ<sup>8</sup>-THC heterodimers. The capacity of the dimers to interact with a panel of CNS targets was explored along with the capacity to activate CB1 receptors, as measured by a GIRK channel activation assay. In the panel screen, the dimers were shown to be generally more active toward 5-HT2B and sigma 2 receptors with a range of <i>K</i><sub><i>i</i></sub> values from 0.6 to 8.7 μM. These findings provide early evidence that this new class of dimers can serve as novel chemical entities to explore receptor function and the potential for these dimers to have bivalent, bitopic, or dual mechanisms of action.</p>","PeriodicalId":47,"journal":{"name":"Journal of Natural Products ","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Products ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jnatprod.4c01174","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cannabidiol (CBD) is a natural product associated with a wide range of biological and therapeutic activities. Despite the widespread cultural acceptance of CBD as a medicinal agent, much remains to be determined regarding its precise mechanism(s) of action in treating multiple conditions. CBD has been shown to promiscuously interact with several neurological targets with varying affinities. To expand the chemical space of phytocannabinoids and develop novel chemical compounds, we have designed and synthesized a series of CBD and Δ8-THC homodimers, and CBD/Δ8-THC heterodimers. The capacity of the dimers to interact with a panel of CNS targets was explored along with the capacity to activate CB1 receptors, as measured by a GIRK channel activation assay. In the panel screen, the dimers were shown to be generally more active toward 5-HT2B and sigma 2 receptors with a range of Ki values from 0.6 to 8.7 μM. These findings provide early evidence that this new class of dimers can serve as novel chemical entities to explore receptor function and the potential for these dimers to have bivalent, bitopic, or dual mechanisms of action.
期刊介绍:
The Journal of Natural Products invites and publishes papers that make substantial and scholarly contributions to the area of natural products research. Contributions may relate to the chemistry and/or biochemistry of naturally occurring compounds or the biology of living systems from which they are obtained.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.
When new compounds are reported, manuscripts describing their biological activity are much preferred.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.