{"title":"Amplification Bias-Free Sequence-Generic Exponential Amplification Reaction","authors":"Xinrong Yan, Qingyuan Wang, Peiru Yang, Yuan Liu, Bin Liu, Tian Wang, Dehui Qiu, Shijiong Wei, Desheng Chen, Jun Zhou, Chenghui Liu, Xiaobo Zhang","doi":"10.1021/acs.analchem.4c05633","DOIUrl":null,"url":null,"abstract":"Despite the unique advantage of the isothermal exponential amplification reaction (EXPAR) for the rapid detection of short nucleic acids, it severely suffers from the drawback of sequence-dependent amplification bias, mainly arising from the secondary structures of the EXPAR template under the commonly used reaction temperature (55 °C). As such, the limits of detection (LOD) for different target sequences may vary considerably from aM to nM. Here we report a sequence-generic exponential amplification reaction (SG-EXPAR) that eliminates sequence-dependent amplification bias and achieves similar amplification performance for different targets with generally sub-fM LODs. The assay innovatively employs a thermophilic nicking enzyme that allows SG-EXPAR to work efficiently at higher temperatures (60–70 °C) while eliminating the secondary structures of the templates, which is the basis for eliminating the amplification bias. Furthermore, we increased the probability of trigger/template binding through rational modification of the locked nucleic acids and template optimization, further ensuring the high amplification efficiency for various targets. According to these critical principles, we have developed an automated design platform that allows nonspecialists to obtain the optimal SG-EXPAR template for any desired sequence. The robust performance of the proposed methodology was demonstrated by quantifying microRNA, SARS-CoV-2, monkeypox virus, and HPV B19 at the 1 fM level without sequence screening. SG-EXPAR significantly expands the potential applications of EXPAR and facilitates the development of reliable point-of-care nucleic acid assays.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"6 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c05633","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the unique advantage of the isothermal exponential amplification reaction (EXPAR) for the rapid detection of short nucleic acids, it severely suffers from the drawback of sequence-dependent amplification bias, mainly arising from the secondary structures of the EXPAR template under the commonly used reaction temperature (55 °C). As such, the limits of detection (LOD) for different target sequences may vary considerably from aM to nM. Here we report a sequence-generic exponential amplification reaction (SG-EXPAR) that eliminates sequence-dependent amplification bias and achieves similar amplification performance for different targets with generally sub-fM LODs. The assay innovatively employs a thermophilic nicking enzyme that allows SG-EXPAR to work efficiently at higher temperatures (60–70 °C) while eliminating the secondary structures of the templates, which is the basis for eliminating the amplification bias. Furthermore, we increased the probability of trigger/template binding through rational modification of the locked nucleic acids and template optimization, further ensuring the high amplification efficiency for various targets. According to these critical principles, we have developed an automated design platform that allows nonspecialists to obtain the optimal SG-EXPAR template for any desired sequence. The robust performance of the proposed methodology was demonstrated by quantifying microRNA, SARS-CoV-2, monkeypox virus, and HPV B19 at the 1 fM level without sequence screening. SG-EXPAR significantly expands the potential applications of EXPAR and facilitates the development of reliable point-of-care nucleic acid assays.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.