Jinghe Sun , Tingting Yan , Yuying Zhang , Chengrong Wen , Jingfeng Yang
{"title":"Gastroprotective effect of fucoidan from Sargassum siliquastrum against ethanol-induced gastric mucosal injury","authors":"Jinghe Sun , Tingting Yan , Yuying Zhang , Chengrong Wen , Jingfeng Yang","doi":"10.1016/j.foodres.2024.115566","DOIUrl":null,"url":null,"abstract":"<div><div>The ethanol-induced BALB/c mice and human gastric epithelial cell (Ges-1 cell) models were used to investigate the <em>Sargassum siliquastrum</em> fucoidan (SFuc) gastroprotective capability. The injury score and histopathological sections of the stomach were used to evaluate the gastroprotective capability. The western blotting and RT-PCR methods determined the signaling mechanism of mice’s gastric injury. SFuc is fucoidan with a molecular weight of 300.7 and 25.1 kDa. The injury score and ulcer index of the SFuc-200 group decreased by 3.85 and 2.06 folds in contrast with the Model group, respectively. The findings indicated that SFuc reduced oxidative stress and inflammatory factor expression in the gastric mucosa by downregulating the levels of associated genes within the TLR-4, MyD88, and MAPK/NF-κB signaling pathways. Meanwhile, the SFuc-200 group promoted the expressions of EGF and PGE 2 by 1.53 and 1.52 folds, respectively. Together with the expression inhibition of p38, ERK, JNK, and NF-κB proteins in gastric tissue to help for differentiation of gastric cells. In addition, SFuc significantly reduced apoptosis occurrence in mice and Ges-1 cells. Our study provides potential mechanism clues of the SFuc’s resistance to ethanol-induced gastric mucosal damage, suggesting its potential functional food for gastric protection.</div></div>","PeriodicalId":323,"journal":{"name":"Food Research International","volume":"201 ","pages":"Article 115566"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Research International","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963996924016375","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The ethanol-induced BALB/c mice and human gastric epithelial cell (Ges-1 cell) models were used to investigate the Sargassum siliquastrum fucoidan (SFuc) gastroprotective capability. The injury score and histopathological sections of the stomach were used to evaluate the gastroprotective capability. The western blotting and RT-PCR methods determined the signaling mechanism of mice’s gastric injury. SFuc is fucoidan with a molecular weight of 300.7 and 25.1 kDa. The injury score and ulcer index of the SFuc-200 group decreased by 3.85 and 2.06 folds in contrast with the Model group, respectively. The findings indicated that SFuc reduced oxidative stress and inflammatory factor expression in the gastric mucosa by downregulating the levels of associated genes within the TLR-4, MyD88, and MAPK/NF-κB signaling pathways. Meanwhile, the SFuc-200 group promoted the expressions of EGF and PGE 2 by 1.53 and 1.52 folds, respectively. Together with the expression inhibition of p38, ERK, JNK, and NF-κB proteins in gastric tissue to help for differentiation of gastric cells. In addition, SFuc significantly reduced apoptosis occurrence in mice and Ges-1 cells. Our study provides potential mechanism clues of the SFuc’s resistance to ethanol-induced gastric mucosal damage, suggesting its potential functional food for gastric protection.
期刊介绍:
Food Research International serves as a rapid dissemination platform for significant and impactful research in food science, technology, engineering, and nutrition. The journal focuses on publishing novel, high-quality, and high-impact review papers, original research papers, and letters to the editors across various disciplines in the science and technology of food. Additionally, it follows a policy of publishing special issues on topical and emergent subjects in food research or related areas. Selected, peer-reviewed papers from scientific meetings, workshops, and conferences on the science, technology, and engineering of foods are also featured in special issues.