Effects of unsaturated C18 fatty acids on “glucose-glutathione” Maillard reaction: Comparison and formation pathways of initial stage and meaty flavor compounds

IF 7 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Wenbin Du , Qianli Ma , Yang Li , Shuang Bai , Yatao Huang , Weiye Cui , Cecilia Accoroni , Bei Fan , Fengzhong Wang
{"title":"Effects of unsaturated C18 fatty acids on “glucose-glutathione” Maillard reaction: Comparison and formation pathways of initial stage and meaty flavor compounds","authors":"Wenbin Du ,&nbsp;Qianli Ma ,&nbsp;Yang Li ,&nbsp;Shuang Bai ,&nbsp;Yatao Huang ,&nbsp;Weiye Cui ,&nbsp;Cecilia Accoroni ,&nbsp;Bei Fan ,&nbsp;Fengzhong Wang","doi":"10.1016/j.foodres.2024.115645","DOIUrl":null,"url":null,"abstract":"<div><div>To explore the effect of oleic acid, linoleic acid, and linolenic acid on “glucose-glutathione” Maillard reaction initial stage and meaty flavor compounds formation pathways, glutathione-Amadori compound was synthesized, and identified by Q/TOF and NMR. Depending on the concentration of glutathione and glutathione-Amadori compound quantified by UPLC–MS/MS, the unsaturated C18 fat acids inhibited glutathione Amadori compound formation or accelerated degradation, and oleic acid inhibited most markedly. The results showed that 65 volatile compounds were detected by GC–MS–O in four model systems. Particularly, following the addition of unsaturated C18 fatty acids, the content of meaty flavor compounds sequentially decreased from oleic acid to linoleic acid and then to linolenic acid. The CAMOLA (carbohydrate module labeling) demonstrated the 2-methylthiophene, 2-thiophenecarboxaldehyde, 4-mercaptophenol, 2-acetylthiazole, and thieno[3,2-b]thiophene formation pathways. Particularly, we found for the first time that the skeleton of 4-mercaptophenol generated from glucose. The volatile compounds of reaction systems were discriminated by heatmap and PCA analysis. These results highlights the effect of lipid composition on Maillard reaction and contributes to the control of savory flavor.</div></div>","PeriodicalId":323,"journal":{"name":"Food Research International","volume":"201 ","pages":"Article 115645"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Research International","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963996924017162","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To explore the effect of oleic acid, linoleic acid, and linolenic acid on “glucose-glutathione” Maillard reaction initial stage and meaty flavor compounds formation pathways, glutathione-Amadori compound was synthesized, and identified by Q/TOF and NMR. Depending on the concentration of glutathione and glutathione-Amadori compound quantified by UPLC–MS/MS, the unsaturated C18 fat acids inhibited glutathione Amadori compound formation or accelerated degradation, and oleic acid inhibited most markedly. The results showed that 65 volatile compounds were detected by GC–MS–O in four model systems. Particularly, following the addition of unsaturated C18 fatty acids, the content of meaty flavor compounds sequentially decreased from oleic acid to linoleic acid and then to linolenic acid. The CAMOLA (carbohydrate module labeling) demonstrated the 2-methylthiophene, 2-thiophenecarboxaldehyde, 4-mercaptophenol, 2-acetylthiazole, and thieno[3,2-b]thiophene formation pathways. Particularly, we found for the first time that the skeleton of 4-mercaptophenol generated from glucose. The volatile compounds of reaction systems were discriminated by heatmap and PCA analysis. These results highlights the effect of lipid composition on Maillard reaction and contributes to the control of savory flavor.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Research International
Food Research International 工程技术-食品科技
CiteScore
12.50
自引率
7.40%
发文量
1183
审稿时长
79 days
期刊介绍: Food Research International serves as a rapid dissemination platform for significant and impactful research in food science, technology, engineering, and nutrition. The journal focuses on publishing novel, high-quality, and high-impact review papers, original research papers, and letters to the editors across various disciplines in the science and technology of food. Additionally, it follows a policy of publishing special issues on topical and emergent subjects in food research or related areas. Selected, peer-reviewed papers from scientific meetings, workshops, and conferences on the science, technology, and engineering of foods are also featured in special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信