Gut dysbiosis as a driver of neuroinflammation in attention-deficit/hyperactivity disorder: A review of current evidence

IF 2.9 3区 医学 Q2 NEUROSCIENCES
Naomi Lewis , Anthony Villani , Jim Lagopoulos
{"title":"Gut dysbiosis as a driver of neuroinflammation in attention-deficit/hyperactivity disorder: A review of current evidence","authors":"Naomi Lewis ,&nbsp;Anthony Villani ,&nbsp;Jim Lagopoulos","doi":"10.1016/j.neuroscience.2025.01.031","DOIUrl":null,"url":null,"abstract":"<div><div>There is mounting evidence for the involvement of the immune system, neuroinflammation and disturbed gut microbiota, or dysbiosis, in attention-deficit/hyperactivity disorder (ADHD). Gut dysbiosis is strongly implicated in many physical, autoimmune, neurological, and neuropsychiatric conditions, however knowledge of its particular pathogenic role in ADHD is sparse. As such, this narrative review examines and synthesizes the available evidence related to inflammation, dysbiosis, and neural processes in ADHD. Minimal differences in microbiota diversity measures between cases and controls were found, however many relative abundance differences were observed at all classification levels (phylum to strain). Compositional differences of taxa important to key gut-brain axis pathways, in particular <em>Bacteroides</em> species and <em>Faecalibacterium</em>, may contribute to inflammation, brain functioning differences, and symptoms, in ADHD. We have identified one possible model of ADHD etiopathogenesis involving systemic inflammation, an impaired blood–brain barrier, and neural disturbances as downstream consequences of gut dysbiosis. Nevertheless, studies conducted to date have varied degrees of methodological rigour and involve diverse participant characteristics and analytical techniques, highlighting a need for additional research.</div></div>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":"569 ","pages":"Pages 298-321"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306452225000338","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

There is mounting evidence for the involvement of the immune system, neuroinflammation and disturbed gut microbiota, or dysbiosis, in attention-deficit/hyperactivity disorder (ADHD). Gut dysbiosis is strongly implicated in many physical, autoimmune, neurological, and neuropsychiatric conditions, however knowledge of its particular pathogenic role in ADHD is sparse. As such, this narrative review examines and synthesizes the available evidence related to inflammation, dysbiosis, and neural processes in ADHD. Minimal differences in microbiota diversity measures between cases and controls were found, however many relative abundance differences were observed at all classification levels (phylum to strain). Compositional differences of taxa important to key gut-brain axis pathways, in particular Bacteroides species and Faecalibacterium, may contribute to inflammation, brain functioning differences, and symptoms, in ADHD. We have identified one possible model of ADHD etiopathogenesis involving systemic inflammation, an impaired blood–brain barrier, and neural disturbances as downstream consequences of gut dysbiosis. Nevertheless, studies conducted to date have varied degrees of methodological rigour and involve diverse participant characteristics and analytical techniques, highlighting a need for additional research.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuroscience
Neuroscience 医学-神经科学
CiteScore
6.20
自引率
0.00%
发文量
394
审稿时长
52 days
期刊介绍: Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信