Noncontact Manipulator for Sedimented/Floating Objects via Laser-Induced Thermocapillary Convection

IF 9.4 1区 计算机科学 Q1 ROBOTICS
Xusheng Hui;Jianjun Luo;Haonan You;Hao Sun
{"title":"Noncontact Manipulator for Sedimented/Floating Objects via Laser-Induced Thermocapillary Convection","authors":"Xusheng Hui;Jianjun Luo;Haonan You;Hao Sun","doi":"10.1109/TRO.2025.3532503","DOIUrl":null,"url":null,"abstract":"Noncontact manipulation in liquid environments holds significant applications in micro/nanofluidics, microassembly, micromanufacturing, and microrobotics. Achieving compatibility in manipulating both sedimented and floating objects, as well as independently and synergistically manipulating multiple targets, remains a significant challenge. Here, a noncontact manipulator is developed for both sedimented and floating objects using laser-induced thermocapillary convection. Various strategies are proposed based on the distinct responses of sedimented and floating objects. Predefined scanning and “checkpoint” methods facilitate accurate movements of individual and multiple particles, respectively. Ultrafast programmed scanning and laser multiplexing enable independent manipulation and high-throughput ordered distribution of multiple particles. At the air–liquid interface, “laser cage” and “laser wall” are proposed to serve as effective tools for manipulating floating objects, especially with vision-based closed-loop control. Methods and strategies here do not rely on specific features of targets, solvents, and substrates. Multiple examples, including complex path replication, maze traversal, and precise assembly and disassembly, are demonstrated to validate the feasibility of this manipulator. This work provides a versatile platform and a novel methodology for noncontact manipulation in liquid.","PeriodicalId":50388,"journal":{"name":"IEEE Transactions on Robotics","volume":"41 ","pages":"1476-1490"},"PeriodicalIF":9.4000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Robotics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10850724/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Noncontact manipulation in liquid environments holds significant applications in micro/nanofluidics, microassembly, micromanufacturing, and microrobotics. Achieving compatibility in manipulating both sedimented and floating objects, as well as independently and synergistically manipulating multiple targets, remains a significant challenge. Here, a noncontact manipulator is developed for both sedimented and floating objects using laser-induced thermocapillary convection. Various strategies are proposed based on the distinct responses of sedimented and floating objects. Predefined scanning and “checkpoint” methods facilitate accurate movements of individual and multiple particles, respectively. Ultrafast programmed scanning and laser multiplexing enable independent manipulation and high-throughput ordered distribution of multiple particles. At the air–liquid interface, “laser cage” and “laser wall” are proposed to serve as effective tools for manipulating floating objects, especially with vision-based closed-loop control. Methods and strategies here do not rely on specific features of targets, solvents, and substrates. Multiple examples, including complex path replication, maze traversal, and precise assembly and disassembly, are demonstrated to validate the feasibility of this manipulator. This work provides a versatile platform and a novel methodology for noncontact manipulation in liquid.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Robotics
IEEE Transactions on Robotics 工程技术-机器人学
CiteScore
14.90
自引率
5.10%
发文量
259
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Robotics (T-RO) is dedicated to publishing fundamental papers covering all facets of robotics, drawing on interdisciplinary approaches from computer science, control systems, electrical engineering, mathematics, mechanical engineering, and beyond. From industrial applications to service and personal assistants, surgical operations to space, underwater, and remote exploration, robots and intelligent machines play pivotal roles across various domains, including entertainment, safety, search and rescue, military applications, agriculture, and intelligent vehicles. Special emphasis is placed on intelligent machines and systems designed for unstructured environments, where a significant portion of the environment remains unknown and beyond direct sensing or control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信