Multiomics and Artificial Intelligence for Personalized Nutritional Management of Diabetes in Patients Undergoing Peritoneal Dialysis

IF 8 1区 医学 Q1 NUTRITION & DIETETICS
Sara Mahdavi , Nicole M Anthony , Tabo Sikaneta , Paul Y Tam
{"title":"Multiomics and Artificial Intelligence for Personalized Nutritional Management of Diabetes in Patients Undergoing Peritoneal Dialysis","authors":"Sara Mahdavi ,&nbsp;Nicole M Anthony ,&nbsp;Tabo Sikaneta ,&nbsp;Paul Y Tam","doi":"10.1016/j.advnut.2025.100378","DOIUrl":null,"url":null,"abstract":"<div><div>Managing diabetes in patients on peritoneal dialysis (PD) is challenging due to the combined effects of dietary glucose, glucose from dialysate, and other medical complications. Advances in technology that enable continuous biological data collection are transforming traditional management approaches. This review explores how multiomics technologies and artificial intelligence (AI) are enhancing glucose management in this patient population. Continuous glucose monitoring (CGM) offers significant advantages over traditional markers, such as hemoglobin A1c (HbA1c). Unlike HbA1c, which reflects an mean glucose level, CGM provides real-time, dynamic glucose data that allow clinicians to make timely adjustments, leading to better glycemic control and outcomes. Multiomics approaches are valuable for understanding genetic factors that influence susceptibility to diabetic complications, particularly those related to advanced glycation end products (AGEs). Identifying genetic polymorphisms that modify a patient's response to AGEs allows for personalized treatments, potentially reducing the severity of diabetes-related pathologies. Metabolomic analyses of PD effluent are also promising, as they help identify early biomarkers of metabolic dysregulation. Early detection can lead to timely interventions and more tailored treatment strategies, improving long-term patient care. AI integration is revolutionizing diabetes management for PD patients by processing vast datasets from CGM, genetic, metabolic, and microbiome profiles. AI can identify patterns and predict outcomes that may be difficult for humans to detect, enabling highly personalized recommendations for diet, medication, and dialysis management. Furthermore, AI can assist clinicians by automating data interpretation, improving treatment plans, and enhancing patient education. Despite the promise of these technologies, there are limitations. CGM, multiomics, and AI require significant investment in infrastructure, training, and validation studies. Additionally, integrating these approaches into clinical practice presents logistical and financial challenges. Nevertheless, personalized, data-driven strategies offer great potential for improving outcomes in diabetes management for PD patients.</div></div>","PeriodicalId":7349,"journal":{"name":"Advances in Nutrition","volume":"16 3","pages":"Article 100378"},"PeriodicalIF":8.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nutrition","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2161831325000146","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0

Abstract

Managing diabetes in patients on peritoneal dialysis (PD) is challenging due to the combined effects of dietary glucose, glucose from dialysate, and other medical complications. Advances in technology that enable continuous biological data collection are transforming traditional management approaches. This review explores how multiomics technologies and artificial intelligence (AI) are enhancing glucose management in this patient population. Continuous glucose monitoring (CGM) offers significant advantages over traditional markers, such as hemoglobin A1c (HbA1c). Unlike HbA1c, which reflects an mean glucose level, CGM provides real-time, dynamic glucose data that allow clinicians to make timely adjustments, leading to better glycemic control and outcomes. Multiomics approaches are valuable for understanding genetic factors that influence susceptibility to diabetic complications, particularly those related to advanced glycation end products (AGEs). Identifying genetic polymorphisms that modify a patient's response to AGEs allows for personalized treatments, potentially reducing the severity of diabetes-related pathologies. Metabolomic analyses of PD effluent are also promising, as they help identify early biomarkers of metabolic dysregulation. Early detection can lead to timely interventions and more tailored treatment strategies, improving long-term patient care. AI integration is revolutionizing diabetes management for PD patients by processing vast datasets from CGM, genetic, metabolic, and microbiome profiles. AI can identify patterns and predict outcomes that may be difficult for humans to detect, enabling highly personalized recommendations for diet, medication, and dialysis management. Furthermore, AI can assist clinicians by automating data interpretation, improving treatment plans, and enhancing patient education. Despite the promise of these technologies, there are limitations. CGM, multiomics, and AI require significant investment in infrastructure, training, and validation studies. Additionally, integrating these approaches into clinical practice presents logistical and financial challenges. Nevertheless, personalized, data-driven strategies offer great potential for improving outcomes in diabetes management for PD patients.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Nutrition
Advances in Nutrition 医学-营养学
CiteScore
17.40
自引率
2.20%
发文量
117
审稿时长
56 days
期刊介绍: Advances in Nutrition (AN/Adv Nutr) publishes focused reviews on pivotal findings and recent research across all domains relevant to nutritional scientists and biomedical researchers. This encompasses nutrition-related research spanning biochemical, molecular, and genetic studies using experimental animal models, domestic animals, and human subjects. The journal also emphasizes clinical nutrition, epidemiology and public health, and nutrition education. Review articles concentrate on recent progress rather than broad historical developments. In addition to review articles, AN includes Perspectives, Letters to the Editor, and supplements. Supplement proposals require pre-approval by the editor before submission. The journal features reports and position papers from the American Society for Nutrition, summaries of major government and foundation reports, and Nutrient Information briefs providing crucial details about dietary requirements, food sources, deficiencies, and other essential nutrient information. All submissions with scientific content undergo peer review by the Editors or their designees prior to acceptance for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信