Nutritional and Functional Characterization of Chia Expeller and Gluten-Free Flours as Ingredients for Premixes.

IF 3.1 2区 农林科学 Q2 CHEMISTRY, APPLIED
Coronel Eb, Ixtaina Vy, Capitani Mi
{"title":"Nutritional and Functional Characterization of Chia Expeller and Gluten-Free Flours as Ingredients for Premixes.","authors":"Coronel Eb, Ixtaina Vy, Capitani Mi","doi":"10.1007/s11130-025-01297-9","DOIUrl":null,"url":null,"abstract":"<p><p>The growing consumer demand for healthier foods that help reduce the risk of chronic diseases has driven the food industry to innovate with nutritionally and technologically viable products. This trend and the nutritional gaps in gluten-free diets have spurred the exploration of unconventional, high-quality ingredients like flour from pseudocereals, legumes, and oilseeds. This study evaluated the nutritional and functional profiles of chia expeller and flours from buckwheat, green/yellow peas, and rice to study their potential as techno-functional ingredients for new gluten-free premixes. Chia expeller, rich in protein, lipids, and fiber, with a notable fatty acid profile -particularly α-linolenic and linoleic acids- and significant levels of Ca, Mg, Fe, Zn, Cu, P, and Na, emerged as a standout ingredient. It also demonstrated remarkable water-binding functionality. Pea flours were notable for their high protein, Ca, Cl, Fe, and linoleic acid content. Meanwhile, rice and buckwheat flours were distinguished by their carbohydrate and oleic acid content. Buckwheat also provides substantial Mg and Zn, while rice flour stood out for its higher brightness. These findings underscore the potential of these flours to contribute to the development of functional foods tailored to meet specific nutritional needs and consumer preferences for healthier options. The distinct functional properties of each flour type can contribute to making targeted formulations, improving the technological properties of gluten-free products.</p>","PeriodicalId":20092,"journal":{"name":"Plant Foods for Human Nutrition","volume":"80 1","pages":"43"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Foods for Human Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11130-025-01297-9","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The growing consumer demand for healthier foods that help reduce the risk of chronic diseases has driven the food industry to innovate with nutritionally and technologically viable products. This trend and the nutritional gaps in gluten-free diets have spurred the exploration of unconventional, high-quality ingredients like flour from pseudocereals, legumes, and oilseeds. This study evaluated the nutritional and functional profiles of chia expeller and flours from buckwheat, green/yellow peas, and rice to study their potential as techno-functional ingredients for new gluten-free premixes. Chia expeller, rich in protein, lipids, and fiber, with a notable fatty acid profile -particularly α-linolenic and linoleic acids- and significant levels of Ca, Mg, Fe, Zn, Cu, P, and Na, emerged as a standout ingredient. It also demonstrated remarkable water-binding functionality. Pea flours were notable for their high protein, Ca, Cl, Fe, and linoleic acid content. Meanwhile, rice and buckwheat flours were distinguished by their carbohydrate and oleic acid content. Buckwheat also provides substantial Mg and Zn, while rice flour stood out for its higher brightness. These findings underscore the potential of these flours to contribute to the development of functional foods tailored to meet specific nutritional needs and consumer preferences for healthier options. The distinct functional properties of each flour type can contribute to making targeted formulations, improving the technological properties of gluten-free products.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Foods for Human Nutrition
Plant Foods for Human Nutrition 工程技术-食品科技
CiteScore
6.80
自引率
7.50%
发文量
89
审稿时长
12-24 weeks
期刊介绍: Plant Foods for Human Nutrition (previously Qualitas Plantarum) is an international journal that publishes reports of original research and critical reviews concerned with the improvement and evaluation of the nutritional quality of plant foods for humans, as they are influenced by: - Biotechnology (all fields, including molecular biology and genetic engineering) - Food science and technology - Functional, nutraceutical or pharma foods - Other nutrients and non-nutrients inherent in plant foods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信