Tian Li , Mengsheng Deng , Shuang Li , Yu Lei , Dong Li , Ke Li
{"title":"Revealing differences in flavor compounds during plum wine fermentation using single and mixed yeast strains through metabolomic analysis","authors":"Tian Li , Mengsheng Deng , Shuang Li , Yu Lei , Dong Li , Ke Li","doi":"10.1016/j.fochx.2024.102100","DOIUrl":null,"url":null,"abstract":"<div><div>Mixed fermentation can enhance the flavor and aroma of fruit wine, but the mechanisms driving this enhancement remain unclear. This study used non-targeted metabolomics to analyze the effects of mixed versus single fermentation on plum wine flavor. The results showed that compared with single fermentation, mixed fermentation reduced ethanol content and the ability to consume reducing sugars. In single fermentation, volatile compounds increased over time, while in mixed fermentation, they first increased and then declined. Mixed fermentation notably increased esters and reduced higher alcohols, with key differentiators including phenethyl acetate, hexyl acetate, isoamyl acetate, ethyl acetate, isoamyl alcohol, phenethyl alcohol, ethyl caproate, and isobutanol. Furthermore, 40 differential non-volatile flavor compounds were identified, with amino acids emerging as the predominant differentiators. The annotation analysis of these compounds revealed 11 important metabolic pathways for proline, aspartate, glutamate, and β-alanine metabolism. These findings provide insight about producing plum wines with distinct flavor profiles.</div></div>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"25 ","pages":"Article 102100"},"PeriodicalIF":6.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751420/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259015752400988X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Mixed fermentation can enhance the flavor and aroma of fruit wine, but the mechanisms driving this enhancement remain unclear. This study used non-targeted metabolomics to analyze the effects of mixed versus single fermentation on plum wine flavor. The results showed that compared with single fermentation, mixed fermentation reduced ethanol content and the ability to consume reducing sugars. In single fermentation, volatile compounds increased over time, while in mixed fermentation, they first increased and then declined. Mixed fermentation notably increased esters and reduced higher alcohols, with key differentiators including phenethyl acetate, hexyl acetate, isoamyl acetate, ethyl acetate, isoamyl alcohol, phenethyl alcohol, ethyl caproate, and isobutanol. Furthermore, 40 differential non-volatile flavor compounds were identified, with amino acids emerging as the predominant differentiators. The annotation analysis of these compounds revealed 11 important metabolic pathways for proline, aspartate, glutamate, and β-alanine metabolism. These findings provide insight about producing plum wines with distinct flavor profiles.
期刊介绍:
Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.