Distribution and functional analysis of two types of quorum sensing gene pairs, glaI1/glaR1 and glaI2/glaR2, in Burkholderia gladioli.

IF 2.2 4区 生物学 Q3 MICROBIOLOGY
Kazumi Takita, Nobutaka Someya, Tomohiro Morohoshi
{"title":"Distribution and functional analysis of two types of quorum sensing gene pairs, glaI1/glaR1 and glaI2/glaR2, in Burkholderia gladioli.","authors":"Kazumi Takita, Nobutaka Someya, Tomohiro Morohoshi","doi":"10.1093/femsle/fnae117","DOIUrl":null,"url":null,"abstract":"<p><p>Burkholderia gladioli produces a yellow-pigmented toxin called toxoflavin, and causes disease on a variety of plants. Previous studies have suggested that the pathogenicity of B. gladioli is regulated by an N-acyl-l-homoserine lactone (AHL)-mediated quorum sensing (QS) system. In this study, complete genome sequencing revealed that B. gladioli pv. gladioli MAFF 302385 possesses two types of AHL synthase and AHL receptor gene pairs: glaI1/glaR1 and glaI2/glaR2. Disruption of QS genes revealed that the glaI1/glaR1 QS system regulated swarming motility, biofilm formation, and colony formation via N-octanoyl-l-homoserine lactone. Although Escherichia coli harboring glaI2 produced N-(3-hydroxyoctanoyl)-l-homoserine lactone and N-(3-hydroxydecanoyl)-l-homoserine lactone, the expression of glaI2 was not confirmed in MAFF 302385 cells. We also found that toxoflavin production was regulated by the glaI1/glaR1 QS system in liquid medium, but not on agar medium. When pathogenicity tests were performed on gladiolus leaves, the wild-type and QS mutants showed a similar level of disease. Our results demonstrated that only the glaI1/glaR1-mediated QS system is active in MAFF 302385, but major virulence factors, especially toxoflavin, are not completely dependent on the QS system.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753530/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnae117","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Burkholderia gladioli produces a yellow-pigmented toxin called toxoflavin, and causes disease on a variety of plants. Previous studies have suggested that the pathogenicity of B. gladioli is regulated by an N-acyl-l-homoserine lactone (AHL)-mediated quorum sensing (QS) system. In this study, complete genome sequencing revealed that B. gladioli pv. gladioli MAFF 302385 possesses two types of AHL synthase and AHL receptor gene pairs: glaI1/glaR1 and glaI2/glaR2. Disruption of QS genes revealed that the glaI1/glaR1 QS system regulated swarming motility, biofilm formation, and colony formation via N-octanoyl-l-homoserine lactone. Although Escherichia coli harboring glaI2 produced N-(3-hydroxyoctanoyl)-l-homoserine lactone and N-(3-hydroxydecanoyl)-l-homoserine lactone, the expression of glaI2 was not confirmed in MAFF 302385 cells. We also found that toxoflavin production was regulated by the glaI1/glaR1 QS system in liquid medium, but not on agar medium. When pathogenicity tests were performed on gladiolus leaves, the wild-type and QS mutants showed a similar level of disease. Our results demonstrated that only the glaI1/glaR1-mediated QS system is active in MAFF 302385, but major virulence factors, especially toxoflavin, are not completely dependent on the QS system.

两类群体感应基因glaI1/ gl1和glaI2/ gl2在剑兰伯克霍尔德菌中的分布及功能分析
剑兰伯克霍尔德菌产生一种黄色色素毒素,称为弓形黄素,并引起多种植物的疾病。已有研究表明,剑兰芽孢杆菌的致病性受n -酰基-l-同型丝氨酸内酯(AHL)介导的群体感应(QS)系统调控。在本研究中,全基因组测序结果显示,剑兰芽孢杆菌(B. gladioli pv.;剑兰MAFF 302385具有两种AHL合成酶和AHL受体基因对:glaI1/glaR1和glaI2/glaR2。对QS基因的破坏表明,glaI1/ glaI1 QS系统通过n -辛烷酰-l-高丝氨酸内酯调节蜂群运动、生物膜形成和集落形成。虽然携带glaI2的大肠杆菌产生N-(3-羟基辛烷基)-l-高丝氨酸内酯和N-(3-羟基癸烷基)-l-高丝氨酸内酯,但glaI2在MAFF 302385细胞中的表达未得到证实。我们还发现,在液体培养基中,glaI1/ glaI1 QS系统对弓形黄素的产生有调控作用,而在琼脂培养基中则没有。当对剑兰叶片进行致病性测试时,野生型和QS突变体显示出相似的疾病水平。我们的研究结果表明,在MAFF 302385中只有glaI1/ glar1介导的QS系统有活性,但主要的毒力因子,尤其是弓形黄素,并不完全依赖于QS系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fems Microbiology Letters
Fems Microbiology Letters 生物-微生物学
CiteScore
4.30
自引率
0.00%
发文量
112
审稿时长
1.9 months
期刊介绍: FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered. 2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020) Ranking: 98/135 (Microbiology) The journal is divided into eight Sections: Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies) Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens) Biotechnology and Synthetic Biology Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses) Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies) Virology (viruses infecting any organism, including Bacteria and Archaea) Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature) Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology) If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信