Wei Luo , Meiyi Duan , Enpeng Liang , Siwei Wang , Jie Yuan
{"title":"The regulation of glutamatergic nervous system in sleep-wake states and general anesthesia","authors":"Wei Luo , Meiyi Duan , Enpeng Liang , Siwei Wang , Jie Yuan","doi":"10.1016/j.brainresbull.2025.111220","DOIUrl":null,"url":null,"abstract":"<div><div>The sleep-wake states and general anesthesia share many neurophysiological similarities, as both involve reversible changes in consciousness and modulation of brain activity. This paper reviews the role of glutamatergic neurons, the brain's primary excitatory neurons, in regulating sleep-wake states and general anesthesia. We discuss the involvement of glutamatergic neurons across various brain regions, including the brainstem, basal forebrain, thalamus, hypothalamus, and cortex, highlighting their contributions to physiological sleep-wake and anesthesia modulation. Recent advancements in techniques such as optogenetics, chemogenetics, and neural tracing have enhanced our understanding of these neurons' functions. Understanding these mechanisms can lead to improved therapeutic strategies for sleep disorders and more precise anesthetic practices, providing new avenues for clinical intervention.</div></div>","PeriodicalId":9302,"journal":{"name":"Brain Research Bulletin","volume":"221 ","pages":"Article 111220"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research Bulletin","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0361923025000322","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The sleep-wake states and general anesthesia share many neurophysiological similarities, as both involve reversible changes in consciousness and modulation of brain activity. This paper reviews the role of glutamatergic neurons, the brain's primary excitatory neurons, in regulating sleep-wake states and general anesthesia. We discuss the involvement of glutamatergic neurons across various brain regions, including the brainstem, basal forebrain, thalamus, hypothalamus, and cortex, highlighting their contributions to physiological sleep-wake and anesthesia modulation. Recent advancements in techniques such as optogenetics, chemogenetics, and neural tracing have enhanced our understanding of these neurons' functions. Understanding these mechanisms can lead to improved therapeutic strategies for sleep disorders and more precise anesthetic practices, providing new avenues for clinical intervention.
期刊介绍:
The Brain Research Bulletin (BRB) aims to publish novel work that advances our knowledge of molecular and cellular mechanisms that underlie neural network properties associated with behavior, cognition and other brain functions during neurodevelopment and in the adult. Although clinical research is out of the Journal''s scope, the BRB also aims to publish translation research that provides insight into biological mechanisms and processes associated with neurodegeneration mechanisms, neurological diseases and neuropsychiatric disorders. The Journal is especially interested in research using novel methodologies, such as optogenetics, multielectrode array recordings and life imaging in wild-type and genetically-modified animal models, with the goal to advance our understanding of how neurons, glia and networks function in vivo.