Synchronous realization of remarkable energy-storage density and efficiency in (Na0.5Bi0.5)0.75Sr0.25TiO3-based lead-free ceramics at moderate electric fields

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yongping Pu , Chunhui Wu , Fangli Yu , Xiang Lu , Yating Ning , Lei Zhang , Zenghui Liu
{"title":"Synchronous realization of remarkable energy-storage density and efficiency in (Na0.5Bi0.5)0.75Sr0.25TiO3-based lead-free ceramics at moderate electric fields","authors":"Yongping Pu ,&nbsp;Chunhui Wu ,&nbsp;Fangli Yu ,&nbsp;Xiang Lu ,&nbsp;Yating Ning ,&nbsp;Lei Zhang ,&nbsp;Zenghui Liu","doi":"10.1016/j.mtphys.2025.101657","DOIUrl":null,"url":null,"abstract":"<div><div>Lead-free dielectric ceramics, as vital components of eco-friendly advanced pulse power systems, have encountered challenges for simultaneously achieving excellent energy-storage density (<em>W</em><sub>rec</sub>) and efficiency (<em>η</em>) at moderate electric fields. To address this issue, a novel class of (1-<em>x</em>)(Na<sub>0.5</sub>Bi<sub>0.5</sub>)<sub>0.75</sub>Sr<sub>0.25</sub>TiO<sub>3</sub>-<em>x</em>(K<sub>0.5</sub>Ag<sub>0.5</sub>)<sub>0.97</sub>Bi<sub>0.01</sub>NbO<sub>3</sub> (NBST-<em>x</em>KABN, <em>x</em> = 0, 0.05, 0.10 and 0.15) relaxor ferroelectric ceramics are designed and synthesized in this work. K<sup>+</sup>-Bi<sup>3+</sup> ion pairs are introduced into NBST-<em>x</em>KABN ceramics to alter charge distribution and destroy local structural symmetry of A-site. Thereby, large saturation polarization is maintained, which assists in energy storage at lower electric fields and minimizing the likelihood of aging failure in energy-storage devices that operate at high electric fields. Moreover, the incorporation of KABN strengthens breakdown strength of ceramics via reducing grain size and improving density and electrical uniformity (simulated by COMSOL). Along with the enhanced relaxor behavior induced by compositional inhomogeneity and ionic disorder, NBST-0.10KABN ceramics synchronously obtain <em>W</em><sub>rec</sub> of 5.3 J/cm<sup>3</sup> and high <em>η</em> of 90.0 % at a moderate electric field of 330 kV/cm. The optimum composition also exhibits satisfactory temperature (30–130 °C) and frequency (1–100 Hz) stability, accompanied by large power density (<em>P</em><sub>D</sub>) of 38.2 MW/cm<sup>3</sup> and rapid discharge rate <em>t</em><sub>0.9</sub> of 34.8 ns. This work offers an achievable tactic to develop dielectric ceramics with remarkable comprehensive energy-storage properties at moderate electric fields, so as to satisfy requirements of energy-storage capacitors in harsh circumstances.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"51 ","pages":"Article 101657"},"PeriodicalIF":10.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325000136","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lead-free dielectric ceramics, as vital components of eco-friendly advanced pulse power systems, have encountered challenges for simultaneously achieving excellent energy-storage density (Wrec) and efficiency (η) at moderate electric fields. To address this issue, a novel class of (1-x)(Na0.5Bi0.5)0.75Sr0.25TiO3-x(K0.5Ag0.5)0.97Bi0.01NbO3 (NBST-xKABN, x = 0, 0.05, 0.10 and 0.15) relaxor ferroelectric ceramics are designed and synthesized in this work. K+-Bi3+ ion pairs are introduced into NBST-xKABN ceramics to alter charge distribution and destroy local structural symmetry of A-site. Thereby, large saturation polarization is maintained, which assists in energy storage at lower electric fields and minimizing the likelihood of aging failure in energy-storage devices that operate at high electric fields. Moreover, the incorporation of KABN strengthens breakdown strength of ceramics via reducing grain size and improving density and electrical uniformity (simulated by COMSOL). Along with the enhanced relaxor behavior induced by compositional inhomogeneity and ionic disorder, NBST-0.10KABN ceramics synchronously obtain Wrec of 5.3 J/cm3 and high η of 90.0 % at a moderate electric field of 330 kV/cm. The optimum composition also exhibits satisfactory temperature (30–130 °C) and frequency (1–100 Hz) stability, accompanied by large power density (PD) of 38.2 MW/cm3 and rapid discharge rate t0.9 of 34.8 ns. This work offers an achievable tactic to develop dielectric ceramics with remarkable comprehensive energy-storage properties at moderate electric fields, so as to satisfy requirements of energy-storage capacitors in harsh circumstances.
在中等电场条件下同步实现(Na0.5Bi0.5)0.75 sr0.25 tio3基无铅陶瓷优异的储能密度和效率
无铅介电陶瓷作为环保先进脉冲电源系统的重要组成部分,在中等电场条件下如何同时实现优异的储能密度(Wrec)和效率(η)一直是一个挑战。为了解决这一问题,本文设计并合成了一类新型的(1-x)(Na0.5Bi0.5)0.75Sr0.25TiO3-x(K0.5Ag0.5)0.97Bi0.01NbO3 (NBST-xKABN, x = 0,0.05, 0.10和0.15)弛豫铁电陶瓷。在NBST-xKABN陶瓷中引入K+-Bi3+离子对,改变了电荷分布,破坏了a位的局部结构对称性。因此,保持了较大的饱和极化,这有助于在低电场下存储能量,并最大限度地减少在高电场下运行的储能装置老化失效的可能性。此外,KABN的加入通过减小晶粒尺寸、改善密度和电均匀性来增强陶瓷的击穿强度(COMSOL模拟)。在330 kV/cm的中等电场下,NBST-0.10KABN陶瓷在组分不均匀性和离子无序性诱导下的弛豫行为增强,同时获得5.3 J/cm3的Wrec和90.0%的高η。最佳组合物还具有令人满意的温度(30 ~ 130°C)和频率(1 ~ 100 Hz)稳定性,并伴有38.2 MW/cm3的大功率密度(PD)和34.8 ns的快速放电率t0.9。本工作为在中等电场条件下开发具有显著综合储能性能的介质陶瓷,以满足恶劣环境下储能电容器的要求提供了一种可行的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信