{"title":"A novel chitosan microsphere as food processing enzyme immobilization carrier and its application in nucleotide production.","authors":"Xiao-Yan Yin, Rui-Fan Yang, Zhong-Hua Yang","doi":"10.1016/j.fochx.2024.102130","DOIUrl":null,"url":null,"abstract":"<p><p>Developing a robust and safe carrier for enzyme immobilization is crucial for their application in the food processing industry. In this study, a novel crosslinked chitosan microspheres (CSMs) were prepared using glutaraldehyde (GA) as the crosslinking agent, using a newly developed emulsification-neutralization combined method. Nuclease P1 (NP1) was immobilized onto these microspheres, the maximum activity of NP1@CSMs-GA reach to 53,859.4 U/g. The activity recovery yield reach to 75 %. Compared to the free NP1, the stability of NP1@CSMs-GA was significantly enhanced. Its v<sub>max</sub> and K<sub>m</sub> is 895.71 mg/(g·min) and 77.27 mg/mL respectively. This NP1@CSMs-GA was utilized in production of nucleotides through hydrolysis of RNA. In BSTR, NP1@CSMs-GA retained more than 75.1 % initial activity after 10 cycles of reuse. Moreover, in PBR, the RNA hydrolysis conversion rate maintained 81 % after 24 h of continuous operation. These results demonstrate that NP1@CSMs-GA exhibits excellent reusability and production stability in practical processes.</p>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"25 ","pages":"102130"},"PeriodicalIF":6.5000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750442/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.fochx.2024.102130","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Developing a robust and safe carrier for enzyme immobilization is crucial for their application in the food processing industry. In this study, a novel crosslinked chitosan microspheres (CSMs) were prepared using glutaraldehyde (GA) as the crosslinking agent, using a newly developed emulsification-neutralization combined method. Nuclease P1 (NP1) was immobilized onto these microspheres, the maximum activity of NP1@CSMs-GA reach to 53,859.4 U/g. The activity recovery yield reach to 75 %. Compared to the free NP1, the stability of NP1@CSMs-GA was significantly enhanced. Its vmax and Km is 895.71 mg/(g·min) and 77.27 mg/mL respectively. This NP1@CSMs-GA was utilized in production of nucleotides through hydrolysis of RNA. In BSTR, NP1@CSMs-GA retained more than 75.1 % initial activity after 10 cycles of reuse. Moreover, in PBR, the RNA hydrolysis conversion rate maintained 81 % after 24 h of continuous operation. These results demonstrate that NP1@CSMs-GA exhibits excellent reusability and production stability in practical processes.
期刊介绍:
Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.