Heterologous Expression and Characterization of Estercin A, a Class II Lanthipeptide Derived from Clostridium estertheticum CF016, with Antimicrobial Activity against Clinically Relevant Pathogens.
Chenhui Wang, Joseph Wambui, Maria Victoria Fernandez-Cantos, Simon Jurt, Jaap Broos, Roger Stephan, Oscar P Kuipers
{"title":"Heterologous Expression and Characterization of Estercin A, a Class II Lanthipeptide Derived from <i>Clostridium estertheticum</i> CF016, with Antimicrobial Activity against Clinically Relevant Pathogens.","authors":"Chenhui Wang, Joseph Wambui, Maria Victoria Fernandez-Cantos, Simon Jurt, Jaap Broos, Roger Stephan, Oscar P Kuipers","doi":"10.1021/acs.jnatprod.4c00814","DOIUrl":null,"url":null,"abstract":"<p><p>Recent genome mining work revealed that unexplored habitats exhibit great potential for discovering new nonribosomal peptides (NRPs) and ribosomally synthesized and post-translationally modified peptides (RiPPs). Lanthipeptides are a group of RiPPs exhibiting a variety of biological functions. They are characterized by the presence of the thioether-containing bis-amino acids lanthionine and/or methyllanthionine. In this study, we heterologously expressed and structurally characterized estercin A, an unprecedented class II lanthipeptide derived from <i>Clostridium estertheticum</i> CF016 in <i>Escherichia coli</i>. Comprising 27 amino acids, estercin A features three overlapping (methyl-)lanthionine rings, with a shorter C-terminal part compared to most reported class II lanthipeptides. Estercin A exhibited selective antimicrobial properties against methicillin-resistant <i>Staphylococcus aureus</i>, bowel infection-associated <i>Clostridium perfringens</i> and <i>Clostridium tetani</i>. The mode of action of estercin A was determined as binding to lipid II on the cell membrane. Estercin A exhibited stability across a range of pH values and temperatures and showed resistance to degradation by trypsin. Our findings highlight estercin A as a novel and stable antimicrobial peptide with significant potential in combating clinically relevant pathogens.</p>","PeriodicalId":47,"journal":{"name":"Journal of Natural Products ","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Products ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jnatprod.4c00814","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Recent genome mining work revealed that unexplored habitats exhibit great potential for discovering new nonribosomal peptides (NRPs) and ribosomally synthesized and post-translationally modified peptides (RiPPs). Lanthipeptides are a group of RiPPs exhibiting a variety of biological functions. They are characterized by the presence of the thioether-containing bis-amino acids lanthionine and/or methyllanthionine. In this study, we heterologously expressed and structurally characterized estercin A, an unprecedented class II lanthipeptide derived from Clostridium estertheticum CF016 in Escherichia coli. Comprising 27 amino acids, estercin A features three overlapping (methyl-)lanthionine rings, with a shorter C-terminal part compared to most reported class II lanthipeptides. Estercin A exhibited selective antimicrobial properties against methicillin-resistant Staphylococcus aureus, bowel infection-associated Clostridium perfringens and Clostridium tetani. The mode of action of estercin A was determined as binding to lipid II on the cell membrane. Estercin A exhibited stability across a range of pH values and temperatures and showed resistance to degradation by trypsin. Our findings highlight estercin A as a novel and stable antimicrobial peptide with significant potential in combating clinically relevant pathogens.
期刊介绍:
The Journal of Natural Products invites and publishes papers that make substantial and scholarly contributions to the area of natural products research. Contributions may relate to the chemistry and/or biochemistry of naturally occurring compounds or the biology of living systems from which they are obtained.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.
When new compounds are reported, manuscripts describing their biological activity are much preferred.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.