Facile synthesis of silicon quantum dots with photoluminescence in the near-ultraviolet to violet region via wet oxidation†

IF 5.7 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yizhou He, Qianxi Hao, Chi Zhang, Qi Wang, Wenxin Zeng, Jiamin Yu, Xue Yang, Shaorong Li, Xiaowei Guo and Serguei K. Lazarouk
{"title":"Facile synthesis of silicon quantum dots with photoluminescence in the near-ultraviolet to violet region via wet oxidation†","authors":"Yizhou He, Qianxi Hao, Chi Zhang, Qi Wang, Wenxin Zeng, Jiamin Yu, Xue Yang, Shaorong Li, Xiaowei Guo and Serguei K. Lazarouk","doi":"10.1039/D4TC02095B","DOIUrl":null,"url":null,"abstract":"<p >To extend the photoluminescence (PL) of silicon quantum dots (SiQDs) into the near-ultraviolet–violet (NUVV) region, the size of SiQDs must be reduced to less than 1.53 nm. However, this significantly increases both the difficulty and the cost of synthesis. Herein, we report a facile wet oxidation treatment to obtain SiQDs with PL emission in the NUVV region while elucidating their emission mechanism. The synthesized SiQDs exhibit an average diameter of 4.95 nm, with F-band emission peaks ranging from 332 to 420 nm, which are blue-shifted by approximately 500 nm compared to the near-infrared (NIR) counterparts lacking wet oxidation treatment. Notably, the synthesized SiQDs achieve an average photoluminescence quantum yield (PLQY) of 19.05%, a 6.24-fold increase over their NIR counterparts. Comprehensive examinations attribute this NUVV emission to two types of oxygen defects: peroxy linkage (POL) and oxygen-deficient center (ODC(I)). Under wet oxidation conditions, SiO<small><sub><em>x</em></sub></small> networks containing these oxygen defects, rather than simple Si–O–Si groups, are formed on the surface of SiQDs. Furthermore, after storing the SiQDs in ambient air for approximately two months, no intrinsic or additional defect-induced emissions were observed, and 88% of the initial PLQY was retained, indicating favorable stability of the SiQDs. This study provides valuable insights into oxygen-related defect-induced emission mechanisms on SiQD surfaces.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 3","pages":" 1228-1242"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc02095b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To extend the photoluminescence (PL) of silicon quantum dots (SiQDs) into the near-ultraviolet–violet (NUVV) region, the size of SiQDs must be reduced to less than 1.53 nm. However, this significantly increases both the difficulty and the cost of synthesis. Herein, we report a facile wet oxidation treatment to obtain SiQDs with PL emission in the NUVV region while elucidating their emission mechanism. The synthesized SiQDs exhibit an average diameter of 4.95 nm, with F-band emission peaks ranging from 332 to 420 nm, which are blue-shifted by approximately 500 nm compared to the near-infrared (NIR) counterparts lacking wet oxidation treatment. Notably, the synthesized SiQDs achieve an average photoluminescence quantum yield (PLQY) of 19.05%, a 6.24-fold increase over their NIR counterparts. Comprehensive examinations attribute this NUVV emission to two types of oxygen defects: peroxy linkage (POL) and oxygen-deficient center (ODC(I)). Under wet oxidation conditions, SiOx networks containing these oxygen defects, rather than simple Si–O–Si groups, are formed on the surface of SiQDs. Furthermore, after storing the SiQDs in ambient air for approximately two months, no intrinsic or additional defect-induced emissions were observed, and 88% of the initial PLQY was retained, indicating favorable stability of the SiQDs. This study provides valuable insights into oxygen-related defect-induced emission mechanisms on SiQD surfaces.

Abstract Image

湿氧化法制备近紫外光致发光硅量子点
为了将硅量子点(SiQDs)的光致发光(PL)扩展到近紫外(NUVV)区域,SiQDs的尺寸必须减小到1.53 nm以下。然而,这大大增加了合成的难度和成本。在此,我们报告了一种简单的湿氧化处理,以获得在NUVV区域具有PL发射的siqd,同时阐明了它们的发射机制。合成的siqd的平均直径为4.95 nm,其f波段发射峰范围为332 ~ 420 nm,与未湿氧化处理的近红外(NIR)相比较,其蓝移约500 nm。值得注意的是,合成的siqd实现了19.05%的平均光致发光量子产率(PLQY),比近红外器件提高了6.24倍。综合检查将这种NUVV发射归因于两种氧缺陷:过氧键(POL)和缺氧中心(ODC(I))。在湿氧化条件下,在siqd表面形成含有这些氧缺陷的SiOx网络,而不是简单的Si-O-Si基团。此外,在将siqd储存在环境空气中大约两个月后,没有观察到固有或额外的缺陷引起的排放,并且保留了88%的初始PLQY,表明siqd具有良好的稳定性。该研究为SiQD表面氧相关缺陷诱导的发射机制提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信