{"title":"Design and Microfabrication of Transition Waveguides for Traveling Wave Tubes (TWTs)","authors":"Yongtao Li;Xiaoguang Ma;Hanyan Li;Nan Li;Jinjun Feng","doi":"10.1109/TPS.2024.3510789","DOIUrl":null,"url":null,"abstract":"This study aims to design and fabricate transition waveguides operating at a frequency range of 80–110 GHz using aluminum die electroforming. The CST software is used to calculate the relationship between the transition waveguide length and the transmission properties of the transition waveguide. The return loss (<inline-formula> <tex-math>$S_{11}$ </tex-math></inline-formula>) of the transition waveguides is less than −20 dB over the passing band. Aluminum die electroforming is chosen to microfabricate them, and the effects of processing parameters on the quality of the electroformed copper lay have been investigated, such as the electrolyte solution and electroforming current. Dimensional accuracy of the completed transition waveguide is about <inline-formula> <tex-math>$\\pm 5~\\mu $ </tex-math></inline-formula> m. The measurement of <inline-formula> <tex-math>$S_{11}$ </tex-math></inline-formula> parameter has been carried out, and test finding shows that the measured <inline-formula> <tex-math>$S_{11}$ </tex-math></inline-formula> is between −25 and −20 dB.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"52 11","pages":"5487-5492"},"PeriodicalIF":1.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10807725/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to design and fabricate transition waveguides operating at a frequency range of 80–110 GHz using aluminum die electroforming. The CST software is used to calculate the relationship between the transition waveguide length and the transmission properties of the transition waveguide. The return loss ($S_{11}$ ) of the transition waveguides is less than −20 dB over the passing band. Aluminum die electroforming is chosen to microfabricate them, and the effects of processing parameters on the quality of the electroformed copper lay have been investigated, such as the electrolyte solution and electroforming current. Dimensional accuracy of the completed transition waveguide is about $\pm 5~\mu $ m. The measurement of $S_{11}$ parameter has been carried out, and test finding shows that the measured $S_{11}$ is between −25 and −20 dB.
期刊介绍:
The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.