Intensive Longitudinal Models

IF 14.3 1区 管理学 Q1 MANAGEMENT
Robert E. Ployhart, Paul D. Bliese, Sam D. Strizver
{"title":"Intensive Longitudinal Models","authors":"Robert E. Ployhart, Paul D. Bliese, Sam D. Strizver","doi":"10.1146/annurev-orgpsych-110622-054803","DOIUrl":null,"url":null,"abstract":"Intensive longitudinal models (ILMs) allow researchers to analyze nested data collected through frequent measurements—typically 20 or more repeated occasions—over densely spaced durations. Rather than being a single statistical approach, ILMs encompass various models unified by their capability to handle densely collected longitudinal data. We briefly summarize the nature of intensive longitudinal designs and why such designs require the use of ILMs. We then provide a classification typology to help readers understand the features of an ILM they should adopt. This classification typology provides the structure for a narrative review of existing ILM research. We conclude with specific recommendations for using ILMs to enhance theory, design, and analysis. Altogether, ILMs are a fairly straightforward extension of longitudinal models many researchers already use, and so we encourage their application to a broader range of theories and topics.","PeriodicalId":48019,"journal":{"name":"Annual Review of Organizational Psychology and Organizational Behavior","volume":"46 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Organizational Psychology and Organizational Behavior","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1146/annurev-orgpsych-110622-054803","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0

Abstract

Intensive longitudinal models (ILMs) allow researchers to analyze nested data collected through frequent measurements—typically 20 or more repeated occasions—over densely spaced durations. Rather than being a single statistical approach, ILMs encompass various models unified by their capability to handle densely collected longitudinal data. We briefly summarize the nature of intensive longitudinal designs and why such designs require the use of ILMs. We then provide a classification typology to help readers understand the features of an ILM they should adopt. This classification typology provides the structure for a narrative review of existing ILM research. We conclude with specific recommendations for using ILMs to enhance theory, design, and analysis. Altogether, ILMs are a fairly straightforward extension of longitudinal models many researchers already use, and so we encourage their application to a broader range of theories and topics.
强化纵向模型
密集纵向模型(ilm)允许研究人员分析通过频繁测量收集的嵌套数据——通常是20次或更多的重复测量——在密集间隔的持续时间内。ilm不是单一的统计方法,而是包含各种模型,这些模型通过处理密集收集的纵向数据的能力统一起来。我们简要地总结了密集纵向设计的本质,以及为什么这种设计需要使用ilm。然后,我们提供了一个分类类型,以帮助读者了解他们应该采用的ILM的特征。这种分类类型学为现有工业光魔研究的叙述性回顾提供了结构。最后,我们提出了使用ilm来增强理论、设计和分析的具体建议。总之,ilm是许多研究者已经使用的纵向模型的一个相当直接的扩展,因此我们鼓励将其应用于更广泛的理论和主题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.20
自引率
2.20%
发文量
22
期刊介绍: Launched in March 2014, the Annual Review of Organizational Psychology and Organizational Behavior is a publication dedicated to reviewing the literature on I/O Psychology and HRM/OB. In the latest edition of the Journal Citation Report (JCR) in 2023, this journal achieved significant recognition. It ranked among the top 5 journals in two categories and boasted an impressive Impact Factor of 13.7.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信