Characterizing Three Heat Shock Protein 70 Genes of Aphis gossypii and Their Expression in Response to Temperature and Insecticide Stress

IF 5.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Jinping Liu, Yang Liu, Wei Wang, Gemei Liang, Yanhui Lu
{"title":"Characterizing Three Heat Shock Protein 70 Genes of Aphis gossypii and Their Expression in Response to Temperature and Insecticide Stress","authors":"Jinping Liu, Yang Liu, Wei Wang, Gemei Liang, Yanhui Lu","doi":"10.1021/acs.jafc.4c09505","DOIUrl":null,"url":null,"abstract":"<i>Aphis gossypii</i> is a highly polyphagous pest that causes substantial agricultural damage. Temperature and insecticides are two major abiotic stresses affecting their population abundance. Heat shock proteins play an essential role in cell protection when insects are exposed to environmental stresses. Three <i>ApHsp70</i> genes were cloned from <i>A. gossypii</i>, and characterized their molecular features and expression profiles in response to temperature and insecticide stress. The deduced amino acid sequences of these proteins exhibited characteristic Hsp70 family signatures, and their tissue-specific expression patterns revealed their highest activity to be in the salivary glands under 35 °C. The temperature inductive assay further indicated that the expression of the three <i>ApHsp70</i> genes was markedly upregulated under heat stress but not under cold shock. Furthermore, exposure to LC<sub>25</sub> and LC<sub>50</sub> concentrations of three insecticides triggered the upregulation of these <i>ApHsp70</i> genes. The RNA interference (RNAi)-mediated suppression of <i>ApHsp68</i> expression heightened cotton aphid’s susceptibility to insecticides (acetamiprid and sulfoxaflor). Moreover, our study found that the sulfoxaflor-resistant strain of <i>A. gossypii</i> (Sul-R) displayed a higher survival rate compared with the sulfoxaflor-sensitive strain (Sul-S) under heat shock conditions. These results suggest that these three <i>ApHsp70</i> genes play an essential role in response to both heat and insecticide stress.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"59 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c09505","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aphis gossypii is a highly polyphagous pest that causes substantial agricultural damage. Temperature and insecticides are two major abiotic stresses affecting their population abundance. Heat shock proteins play an essential role in cell protection when insects are exposed to environmental stresses. Three ApHsp70 genes were cloned from A. gossypii, and characterized their molecular features and expression profiles in response to temperature and insecticide stress. The deduced amino acid sequences of these proteins exhibited characteristic Hsp70 family signatures, and their tissue-specific expression patterns revealed their highest activity to be in the salivary glands under 35 °C. The temperature inductive assay further indicated that the expression of the three ApHsp70 genes was markedly upregulated under heat stress but not under cold shock. Furthermore, exposure to LC25 and LC50 concentrations of three insecticides triggered the upregulation of these ApHsp70 genes. The RNA interference (RNAi)-mediated suppression of ApHsp68 expression heightened cotton aphid’s susceptibility to insecticides (acetamiprid and sulfoxaflor). Moreover, our study found that the sulfoxaflor-resistant strain of A. gossypii (Sul-R) displayed a higher survival rate compared with the sulfoxaflor-sensitive strain (Sul-S) under heat shock conditions. These results suggest that these three ApHsp70 genes play an essential role in response to both heat and insecticide stress.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Agricultural and Food Chemistry
Journal of Agricultural and Food Chemistry 农林科学-农业综合
CiteScore
9.90
自引率
8.20%
发文量
1375
审稿时长
2.3 months
期刊介绍: The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信