Mohammad Madani, Valentina Lacivita, Yongwoo Shin, Anna Tarakanova
{"title":"Accelerating materials property prediction via a hybrid Transformer Graph framework that leverages four body interactions","authors":"Mohammad Madani, Valentina Lacivita, Yongwoo Shin, Anna Tarakanova","doi":"10.1038/s41524-024-01472-7","DOIUrl":null,"url":null,"abstract":"<p>Machine learning has advanced the rapid prediction of inorganic materials properties, yet data scarcity for specific properties and capturing thermodynamic stability remains challenging. We propose a framework utilizing a Graph Neural Network with composition-based and crystal structure-based architectures, combined with a transfer learning scheme. This approach accurately predicts energy-related properties (e.g., total energy, energy above the convex hull, energy band gap) and data-scarce mechanical properties (e.g., bulk and shear modulus). Our model incorporates four-body interactions, capturing periodicity and structural characteristics. It outperforms state-of-the-art models in 8 materials property regression tasks. Also, this model predicts local atomic environments and global structural features better than several models. Transfer learning addresses mechanical property data scarcity, while separate architecture analysis allows application to materials lacking crystal structure information. Our framework’s interpretability aids in understanding elemental contributions, enhancing material design and discovery. Continuous advancements promise further performance improvements, driving efficient and accurate materials property prediction.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"7 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01472-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning has advanced the rapid prediction of inorganic materials properties, yet data scarcity for specific properties and capturing thermodynamic stability remains challenging. We propose a framework utilizing a Graph Neural Network with composition-based and crystal structure-based architectures, combined with a transfer learning scheme. This approach accurately predicts energy-related properties (e.g., total energy, energy above the convex hull, energy band gap) and data-scarce mechanical properties (e.g., bulk and shear modulus). Our model incorporates four-body interactions, capturing periodicity and structural characteristics. It outperforms state-of-the-art models in 8 materials property regression tasks. Also, this model predicts local atomic environments and global structural features better than several models. Transfer learning addresses mechanical property data scarcity, while separate architecture analysis allows application to materials lacking crystal structure information. Our framework’s interpretability aids in understanding elemental contributions, enhancing material design and discovery. Continuous advancements promise further performance improvements, driving efficient and accurate materials property prediction.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.