Úna. E. Hogan, H. Ben Voss, Benjamin Lei, Rodney D. L. Smith
{"title":"Integrating C–H Information to Improve Machine Learning Classification Models for Microplastic Identification from Raman Spectra","authors":"Úna. E. Hogan, H. Ben Voss, Benjamin Lei, Rodney D. L. Smith","doi":"10.1021/acs.analchem.4c05197","DOIUrl":null,"url":null,"abstract":"Research has shown microplastic particles to be pervasive pollutants in the natural environment, but labor-intensive sample preparation, data acquisition, and analysis protocols continue to be necessary to navigate their diverse chemistry. Machine learning (ML) classification models have shown promise for identifying microplastics from their Raman spectra, but all attempts to date have focused on the lower energy “fingerprint” region of the spectrum. We explore strategies to improve ML classification models based on the <i>k</i>-nearest-neighbor algorithm by including other regions of the Raman spectra. The information content inherent in C–H bonds, which occur in the higher frequency region of 2500–3600 cm<sup>–1</sup>, is found to be particularly powerful in improving classification model performance. Variations in the relative intensity of peaks arising from C–H vibrations improve identification capabilities for plastics that the fingerprint region alone struggles with, such as resolving acrylonitrile butadiene styrene from polystyrene and identifying poly(vinyl chloride), polyurethane, and polyoxymethylene. Testing of strategies to both acquire and analyze data across the two regions is explored for their efficacy and their compatibility with real-world sampling restrictions. We find that localized normalization of spectra, independently acquired in the two regions, provides the most direct and effective route to improving the ML classification performance.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"34 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c05197","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Research has shown microplastic particles to be pervasive pollutants in the natural environment, but labor-intensive sample preparation, data acquisition, and analysis protocols continue to be necessary to navigate their diverse chemistry. Machine learning (ML) classification models have shown promise for identifying microplastics from their Raman spectra, but all attempts to date have focused on the lower energy “fingerprint” region of the spectrum. We explore strategies to improve ML classification models based on the k-nearest-neighbor algorithm by including other regions of the Raman spectra. The information content inherent in C–H bonds, which occur in the higher frequency region of 2500–3600 cm–1, is found to be particularly powerful in improving classification model performance. Variations in the relative intensity of peaks arising from C–H vibrations improve identification capabilities for plastics that the fingerprint region alone struggles with, such as resolving acrylonitrile butadiene styrene from polystyrene and identifying poly(vinyl chloride), polyurethane, and polyoxymethylene. Testing of strategies to both acquire and analyze data across the two regions is explored for their efficacy and their compatibility with real-world sampling restrictions. We find that localized normalization of spectra, independently acquired in the two regions, provides the most direct and effective route to improving the ML classification performance.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.